Research Outputs

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Experimental study on the mechanical behavior of polypropylene fibre reinforced concrete subjected to monotonic loads
    (Latin American journal of solids struct, 2021) ;
    Torres Moreno, Ronald
    ;
    Ligas Fonseca, Salvador
    ;
    ; ;
    Roco Videla, Angel
    The properties of fibre reinforced concrete were studied under monotonic loads according to Japanese, North American and European codes. Two different types of SIKA polypropylene fibre were with different dosages. One hundred and eighty tests were performed, obtaining resistance to compression, tension, bending, toughness, and energy absorption in the hardened state. The results show that the addition of fibres affects the workability of the concrete mix. The increase in fibre dosage does not affect compressive, tensile, or flexural strength. However, the failure changes from brittle to more ductile, allowing it to reach residual strengths of 50% of the maximum reached and 200% deformation. The dissipated energy increased with increasing fibre dosage. The performance achieved by both fibres was similar, although the optimal dosage was 6 kg/m3 for type A fibres and 8 kg /m3 for type B. Therefore, the replacement of flexural reinforcing steel in the foundation slabs of one-story buildings can be performed if adequate dosages are used in compliance with established analytical procedures for industrial floor design.
  • Thumbnail Image
    Publication
    Assessment of strength reduction factor on concrete moment frames according to the new Venezuelan seismic code
    (MDPI, 2022)
    Mata Lemus, RamĂ³n
    ;
    Idrees Rustom, Ahmad
    ;
    SĂ¡nchez RodrĂ­guez, Javier
    ;
    Torres Moreno, Ronald
    ;
    ;
    Nonlinear static analysis is a validated tool for the seismic evaluation of existing and new structures, specifically for reinforced concrete buildings. In order to assess the performance of reinforced concrete frames designed according to the new Venezuelan seismic code, configurations of low-, medium-, and high-rise concrete buildings are subjected to 20 different load patterns considering the nonlinear behavior according to FEMA P695. A total of 140 concrete frame models were analyzed using modal response spectrum analysis and nonlinear static pushover analysis. The parameters considered for analyzing the models were the response reduction factor (R), the overstrength factor (RΩ), and the ductility factor (Rµ). The results showed a performance controlled by ductile failure mechanisms in low-rise models unlike combined failure mechanisms with columns with plastic hinge in high-rise models. Reduction factor values between 4 and 14 were obtained. In addition, the pushover curves were affected by the load patterns; therefore, it was necessary to identify the representative patterns, refusing the rest of the patterns. A statistical adjustment was performed using a log-normal distribution. The strength reduction factor specified in the new Venezuelan code was higher than the values obtained for the 95% confidence levels according to the distribution assumed in the reinforced concrete frames models. Finally, the strength reduction factor more representative is R = 4.
  • Thumbnail Image
    Publication
    Seismic performance of RC moment frame buildings considering SSI effects: A case study of the new Venezuelan seismic code
    (Buildings, 2023)
    HernĂ¡ndez, MatĂ­as
    ;
    Mata, RamĂ³n
    ;
    ; ;
    The Soil–Structure Interaction (SSI) effect has been widely evidenced during several earthquakes around the world. In the Venezuelan context, the seismic event in Caracas in 1967 showed the significant consequences of designing buildings without considering the SSI effect. Nevertheless, limited research on the seismic performance of concrete moment frames (commonly used as structural systems in office and residential buildings in Venezuela and Latin America) considering the SSI effects has been developed, although there have been continuous updates to the Venezuelan Seismic Code. In this research, the influence of the SSI on the seismic performance of RC moment frame buildings designed according to the New Venezuelan Seismic Code was studied. An extensive numerical study of 3D buildings using concrete moment frames supported by mat foundations on sandy and clayey soils was performed. The response spectrum method, non-linear static analysis, and non-linear dynamic analysis were used to assess the seismic response of the archetypes studied. The results show that SSI effects can have a significant impact on the seismic response of RC moment frame buildings, increasing the interstory drift ratio and decreasing the shear forces. As is shown in fragility curves, the probability of collapse increases for cases with flexible bases in comparison to the cases of models with fixed bases. Additionally, in the 24-story archetype, the fixed-base model reached a maximum probability of collapse. Finally, a new proposal for the reduction of the strength-reduction factor (R) must be incorporated into the Venezuelan Seismic Code to improve the safety of the structures. Limitations in the use of RC moment frames must be incorporated for high-rise buildings since, as the present work demonstrates, for high-period structures, the normative provisions are not reached.
  • Thumbnail Image
    Publication
    Implementation of building information modeling technologies in wood construction: A review of the state of the art from a multidisciplinary approach
    (MDPI, 2024) ; ; ;
    Mata-Lemus, RamĂ³n
    ;
    Roa-Rojas, Leonardo
    ;
    Lobos-Calquin, Danny
    ;
    Caicedo, Natalia
    ;
    Blanco-Fernandez, David
    ;
    DĂ­az, Marcos
    ;
    Pulgar-Rubilar, Pablo
    This research raises questions about the possibilities and options of using the BIM methodology associated with software for the wood design and construction of structure modeling along an asset’s cycle life. Likewise, several academic and research initiatives are reviewed. In this sense, this paper aims to establish an appropriate link between two agendas that the architecture, engineering, and construction (AEC) industry, academia, and governments normally handle separately. By conducting several literature reviews (book, journals, and congresses) and extensive software tests (BIM software: Revit v2023, Archicad v27, Tekla, and wood plug-ins: AGACAD, Archiframe, Timber Framing 2015, WoodStud Frame, etc.), the state-of-the-art was assessed in both fields, and several cases linking BIM and wood are shown in detail and discussed. Various theoretical samples are modelled and shown, and the advantages and disadvantages of each technique and stage are explained. On the other hand, although wood construction has been most common for hundreds of years, this is not the case of BIM software developments associated with this materiality. Furthermore, since the appearance of materials such as steel and reinforced concrete, all software developments have focused on these materials, leaving aside the possibility of developing applications for use in wood projects. According to that previously discussed, it can be concluded that BIM for wood has been used more frequently in academia, that both fields have several common processes, and, in many cases, that only a few BIM-wood tools have been used, thus disregarding the high potential and high level of benefits that result with the application of these methodologies for the complete building life cycle (design, construction, and operation).