Research Outputs

Now showing 1 - 1 of 1
No Thumbnail Available
Publication

Transition from synchronous to asynchronous mechanisms in 1,3-dipolar cycloadditions: A polarizability perspective

2024, Dra. Duran-Guajardo, Rocio, Barrales-Martínez, César, Jaque, Pablo

Context: This study investigates the energetic and polarizability characteristics of three 1,3-dipolar cycloaddition reactions between diazene oxide and substituted ethylenes, focusing on the transition from synchronous to asynchronous mechanisms. Synchronicity analysis, using the reaction force constant, indicates that the bond evolution process becomes increasingly decoupled as the number of cyano groups increases. Polarizability analysis reveals that isotropic polarizability reaches its maximum near the transition state in all cases, while anisotropy of polarizability shifts from the transition state toward the product direction as asynchronicity increases. The larger the shift, the more asynchronous the mechanism, as refected by the weight of the transition region. A detailed examination of the parallel and perpendicular polarizability components to the newly formed sigma bonds shows that the evolution of the parallel component is closely aligned with the energetic changes along the reaction coordinate, particularly in the synchronous reaction. We have also identifed a relationship between the displacement in the maximum state of the parallel component from the transition state and the synchronicity of the mechanism. The larger the displacement, the more asynchronous the mechanism. These fndings suggest that asynchronous 1,3-dipolar cycloaddition mechanisms are characterized by a decoupling of isotropic and anisotropic polarizabilities and a shift in the maximum polarizability state of the parallel component toward the product direction. Methods: Density functional theory calculations were performed at the B3LYP/6–311+ +G(d,p)//B3LYP/6-31G(d,p) level of theory. The polarizability was calculated at each point of the reaction path, obtained using the intrinsic reaction coordinate method, as implemented in Gaussian 16.