Options
Dr. Maureira-Carsalade, Nelson
Nombre de publicaciĂ³n
Dr. Maureira-Carsalade, Nelson
Nombre completo
Maureira Carsalade, Nelson Eduardo
Facultad
Email
nmaureira@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationInnovative use of copper mine tailing as an additive in cement mortar(Elsevier, 2023)
; ;Prakash-Arunachalam, Krishna ;Avudaiappan, Siva ;Da Costa Garcia Filho, Fabio ;Neves-Monteiro, Sergio ;Devesa-Batista, Isabelade Azevedo, AfonsoThis research assesses the feasibility of recycling copper mine tailings (CMT) by analyzing the durability and mechanical characteristics of cement mortar using these tailings as filler additives. CMT are mineral wastes generated during the process of mining. In this work, specimens of cement mortar were incorporated with up to 30 wt.% of a CMT. Bulk density, dynamic modulus of elasticity, apparent density, ultrasonic pulse velocity, flexural and compressive strengths tests were evaluated. Total amount of voids, sorptivity, water absorption and chemical resistance tests were also obtained to evaluate the mortar durability. When10wt.%CMTwasincorporated, overall amount of voids in the mortar was reduced by 20% and mechanical performance was improved by 16% after 28 days. The flexural strength of the mortar was also found to increase, with the 20% wt.% CMT mortar incorporation reaching a flexural strength of 5.89 MPa. Thus represents 16% increase compared to the control 0% CMT strength. The results indicated that there was not a perfect correlation between these results and the mechanical strength results for the 15and 20wt.% CMT mortars. In addition, the CMT acts as a protective barrier against harmful chemicals. The results of this research indicate that reusing CMT by incorporating into cement mortar is a feasible method for their recycling. Mortar made with as much as 15 wt.% CMT presented the same strength and durability as mortar with traditional sand and cement. - PublicationInnovative use of single-use face mask fibers for the production of a sustainable cement mortar(Journal of Composites Science, 2023)
;Siva Avudaiappan ;Cendoya, Patricio ;Krishna Prakash Arunachalam; ;Canales, Cristian ;Mugahed AmranParra, Pablo F.Due to the COVID-19 epidemic, biomedical waste management has overwhelmed both developed and developing nations. It is now a critical issue that has to be addressed with minimal possible adverse impact on the environment. This study introduced a technique of recycling face masks into polypropylene fibers for use in concrete. This proposed recycling process provides complete disinfection of contaminated clinical waste and offers the opportunity to transform the characteristics of an end product. Microfibers manufactured from recycled medical masks were subjected to testing. According to the results, polypropylene is the primary component of this research program. Two batches of concrete were made, one with the inclusion of masks as polypropylene fibers and another that performed as a control mix. The modified mortar was compared to the control mix in split tensile, flexure, compressive strength, and water absorption. Compressive strength was found to be improved by about 17%, and tensile strength to be increased by around 22% when mask fibers were incorporated. This research introduced a novel approach for disposing of waste masks and established the preliminary viability of upcycling trash face masks towards mortar concrete production.