Options
Dr. Ulloa-Diaz, David
Nombre de publicación
Dr. Ulloa-Diaz, David
Nombre completo
Ulloa Diaz, David Leonardo
Facultad
Email
dulloa@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationRelationship between anthropometric nutritional status and functional capacity in older adults living in the community(Sociedad Médica de Santiago, 2020)
;Guede Rojas, Francisco ;Jerez Mayorga, Daniel; ;Soto Martínez, Adolfo ;Ramírez Campillo, Rodrigo ;Barboza González, PaolaAngarita Dávila, LisséBackground: The functional fitness of older people may be associated with their nutritional status. Aim: To assess the association between of anthropometric measures with functional fitness in older people. Material and Methods: Cross-sectional study conducted in 75 participants aged 65 to 89 years. Body mass index (BMI), waist-to-height ratio (WHtR), fat mass (FM) and skeletal muscle mass index (SMI) were calculated from anthropometric measures. The functional fitness was determined using the Senior Fitness Test battery. Results: BMI and FM indicated obesity, and WHtR indicated cardiometabolic risk in 49%, 55% and 83% of participants, respectively. SMI indicated a low muscle mass in 91% of females. Performance standards of chair stand, arm curl, 2-min step test and 8-foot up-and-go tests were met in 1%, 8%, 1% and 89% of participants, respectively. Significant negative correlations were found between 2-min step test and BMI, WHtR and FM (r = −0.26, −0.31 and −0.48 respectively). Back scratch had a negative correlation with BMI (r = −0.23) and SMI (rho = −0.28). Significant positive correlations were found between 8-foot up-and-go, WHtR (rho = 0.28) and FM (rho = 0.23), and between 2-min step test and SMI (rho = 0.28). The coefficient of determination (R2) between 2-min step test with BMI, WHtR and FM were 0.05, 0.08 and 0.22, respectively, while the R2 between back scratch and BMI was 0.04. Multiple regression models indicated that FM affected the 2-min step test independently of BMI and WHtR (adjusted R2 = 0.22), however age and sex negatively influenced these associations. Conclusions: Functional fitness of older adults is influenced by nutritional anthropometric measures, particularly BMI, WHtR and FM for aerobic capacity, and BMI for upper limb flexibility. - PublicationReliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise(Routledge, 2019)
;García-Ramos, Amador ;Barboza González, Paola; ;Rodriguez Perea, Angela ;Martinez Garcia, Darío ;Guede Rojas, Francisco ;Hinojosa Riveros, Hans ;Chirosa Ríos, Luis Javier; ;Janicijevic, DanicaWeakley, JonathonThis study examined the reliability and validity of three methods of estimating the one-repetition maximum (1RM) during the free-weight prone bench pull exercise. Twenty-six men (22 rowers and four weightlifters) performed an incremental loading test until reaching their 1RM, followed by a set of repetitions-to-failure. Eighteen participants were re-tested to conduct the reliability analysis. The 1RM was estimated through the lifts-to-failure equations proposed by Lombardi and O'Connor, general load-velocity (L-V) relationships proposed by Sánchez-Medina and Loturco and the individual L-V relationships modelled using four (multiple-point method) or only two loads (two-point method). The direct method provided the highest reliability (coefficient of variation [CV] = 2.45% and intraclass correlation coefficient [ICC] = 0.97), followed by the Lombardi's equation (CV = 3.44% and ICC = 0.94), and no meaningful differences were observed between the remaining methods (CV range = 4.95-6.89% and ICC range = 0.81-0.91). The lifts-to-failure equations overestimated the 1RM (3.43-4.08%), the general L-V relationship proposed by Sánchez-Medina underestimated the 1RM (-3.77%), and no significant differences were observed for the remaining prediction methods (-0.40-0.86%). The individual L-V relationship could be recommended as the most accurate method for predicting the 1RM during the free-weight prone bench pull exercise.