Options
Dr. Muñoz-Ortiz, Enrique
Nombre de publicación
Dr. Muñoz-Ortiz, Enrique
Nombre completo
Muñoz Ortiz, Enrique Alejandro
Facultad
Email
emunozo@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationAnalysis of the behavior of groundwater storage systems at different time scales in basins of South Central Chile: A study based on flow recession recordsUnderstanding the groundwater storage and release (S-Q) process and its contribution to river flows is essential for different hydrological applications, especially in periods of water scarcity. The S-Q process can be characterized based on recession parameter b, which is the slope of the power–law relationship −dQ/dt = aQb of the recession flow analysis, where recession parameter b represents the linearity of the S-Q process. In various studies, it has been found that this parameter can present high variability, which has been associated with the approach or spatial variability of basin characteristics. However, the variability of parameter b and its relationship with geology and the behavior of groundwater storage over time (evolution over time) have not been sufficiently studied. The objective of this study is to analyze the variability of recession parameter b and its relationship with geological and morphological characteristics and climate variability at different time scales. To this end, 72 drainage basins located in south central Chile were examined via recession flow analysis, considering five different time scales (5 years, 10 years, 15 years, 20 years, and 25 years). In addition, to analyze spatial variability patterns and generate groups of basins with similar characteristics, a cluster analysis was carried out. Clusters were obtained using the principal component analysis (PCA) and K-means methods. The results show that in wet periods, the slope of recession parameter b tends to increase (fast drainage process), while in dry periods, the recession slope tends to decrease (slow drainage processes). In general, the results suggest that the variability of recession coefficient b indicates changes in S-Q behavior; therefore, it could be used as an indicator of the sensitivity of a basin to climate variability.
- PublicationImpacts of climate change induced sea level rise, flow increase and vegetation encroachment on flood hazard in the Biobío River, ChileRiver flooding is one of the most widespread natural disasters. Projections indicate that climate change will increase flood hazard in many areas around the world. In this study, we investigate the individual and combined effects of sea level rise, flow increase and riparian vegetation encroachment on flood hazard in the lower Biobío River, Chile. Results show that each has the potential to individually increase flood hazard in certain areas, and that individual effects can compound. Encroachment of riparian vegetation onto previously sparsely vegetated areas of the floodplain, likely a result of the Chilean megadrought, causes higher flow resistance and increased flooding during large events. Somewhat counterintuitively, drought has therefore led to an increase in flood hazard in the study area. Drought risk for most land areas across the globe is expected to increase with climate change. Potential future vegetation encroachment should therefore be included as a key variable in riverine flood hazard studies.
- PublicationAnalysis of the interaction of surface water and groundwater in an Andean volcanic catchment, Chile(Tecnología y Ciencias del Agua, 2020)
;Parra, Víctor; ;Arumí, José LuisParedes, JerónimoIn the south-central zone of Chile, the Renegado River presents irregular behavior during the dry season, with dry and high-flow sections along its course at the same time. The objective of this study was to identify interactions between surface and groundwater that explain this behavior. Through a flow measurement campaign along the river, an analysis of the geological conditions of the watershed and the use of a numerical groundwater flow model, the interactions between the water table and the river were described and represented. As a result, it was identified that the combination of topography and geology given by the volcanic nature of the catchment leads the river to gain or lose surface water along its course. It is recommended that the interaction between surface and groundwater be analyzed to address hydrological design studies and water management in volcanic systems with similar characteristics