Research Outputs

Now showing 1 - 3 of 3
Thumbnail Image
Publication

Analysis of the relative importance of model parameters in watersheds with different hydrological regimes

2020, Medina González, Yelena, Muñoz-Ortiz, Enrique

Depending on the purpose of the study, aggregated hydrological models are preferred over distributed models because they provide acceptable results in terms of precision and are easy to run, especially in data scarcity scenarios. To obtain acceptable results in terms of hydrological process representativeness, it is necessary to understand and assess the models. In this study, the relative importance of the parameters of the Hydrologiska Byråns Vattenbalansavdelning (HBV) model is analyzed using sensitivity analysis to detect if the simulated processes represent the predominant hydrological processes at watershed scale. As a case study, four watersheds with different hydrological regimes (glacial and pluvial) and therefore different dominant processes are analyzed. The results show that in the case of the rivers with a glacial regime, the model performance depends highly on the snow module parameters, while in the case of the rivers with a pluvial regime, the model is sensitive to the soil and evapotranspiration modules. The results are directly related to the hydrological regime, which indicates that the HBV model, complemented by sensitivity analysis, is capable of both detecting and representing hydrological processes at watershed scale.

Thumbnail Image
Publication

Analysis of the Relative Importance of the Main Hydrological Processes at Different Temporal Scales in Watersheds of South-Central Chile

2022, Medina, Yelena, Muñoz-Ortiz, Enrique, Clasing, Robert, Arumí, José

In Chile in recent years, changes in precipitation and temperatures have been reported that could affect water resource management and planning. One way of facing these changes is studying and understanding the behavior of hydrological processes at a regional scale and their different temporal scales. Therefore, the objective of this study is to analyze the importance of the hydrological processes of the HBV model at different temporal scales and for different hydrological regimes. To this end, 88 watersheds located in south-central Chile were analyzed using time-varying sensitivity analysis at five different temporal scales (1 month, 3 months, 6 months, 1 year, and 5 years). The results show that the model detects the temporality of the most important hydrological processes. In watersheds with a pluvial regime, the greater the temporal scale, the greater the importance of soil water accumulation processes and the lower the importance of surface runoff processes. By contrast, in watersheds with a nival regime, at greater temporal scales, groundwater accumulation and release processes take on greater importance, and soil water release processes are less important.

Thumbnail Image
Publication

Correction of precipitation records through inverse modeling in watersheds of South-Central Chile

2018, Muñoz-Ortiz, Enrique, Acuña, Mauricio, Lucero, Juan, Rojas, Ignacio

Precipitation is the main input in the water balance of watersheds; therefore, correct estimates are necessary for water resources management and decision making. In south-central Chile there is a low density of precipitation gauges (~1 station/675 km2), most of which are located in low-altitude areas. The spatial distribution of precipitation is, therefore, not properly recorded. In this study an inverse modeling approach is used to estimate the extent to which precipitation amounts must be corrected. Using a lumped water balance model, a factor for correcting precipitation data is calculated for 41 watersheds located in south-central Chile. Then, based on a geo-statistical interpolation, a map for correcting the precipitation amounts is proposed and a validation of these corrections is achieved. The results show that in gently sloping areas, the precipitation records are more representative than in steep mountain areas. In addition, the higher the mountains, the less representative the precipitation records become.