Options
Dr. Contreras-Quintana, Sergio
Research Outputs
Organic matter geochemical signatures (TOC, TN, C/N ratio, δ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes
2018, Contreras-Quintana, Sergio, Werne, Josef P., Araneda, A., Urrutia, R., Conejero, C. A.
Paleolimnological studies in western South America, where meteorological stations are scarce, are critical to obtain more realistic and reliable regional reconstructions of past climate and environmental changes, including vegetation and water budget variability. However, climate and environmental geochemical indicators must be tested before they can be applied with confidence. Here we present a survey of lacustrine surface sediment (core top, 0 to ~1 cm) biogeochemical proxies (total organic carbon [TOC], total nitrogen [TN], carbon/nitrogen ratio [C/N ratio] and bulk organic δ13C and total δ15N) from a suite of 72 lakes spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, and conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest further south. Sedimentary data are compared to the latitudinal and orographic climatic trends of the region based on the climatology (precipitation and temperature) produced with Climate Forecast System Reanalysis (CFSR) data and the modern Southern Hemisphere Westerly Winds (SWW) location. The geochemical data show inflection points at ~42°S latitude and ~1500 m elevation that are likely related to the northern limit of influence of the SWW and elevation of the snow line, respectively. Overall the organic proxies were able to mimic climatic trends (Mean Annual Precipitation [MAP] and temperature [MAT]), indicating that they are a useful tool to be included in paleoclimatological reconstruction of the region.
Abundance and distribution of plant derived leaf waxes (long chain n-alkanes & fatty acids) from lake surface sediments along the west coast of southern South America: Implications for environmental and climate reconstructions
2023, Contreras-Quintana, Sergio, Werne, Josef, Araneda, A., Tejos, Eduardo, Moscoso, J.
Southern South America is the only large landmass that extends through the core of the Southern Westerly Winds (SWW), controlling hydrological and ecosystem variability in the region. In fact, the vegetation along the west coast changes from Temperate and Valdivian Rain Forest to the North Patagonian Evergreen Forest (ca. 42°S) due to the latitudinal influence of the SWW. Climate is an important driver of organic matter accumulation in lakes, hence changes in vegetation would be recorded in lacustrine sedimentary archives. This study evaluated leaf waxes contained in lake surface sediments as indicators of climate change along the west coast of southern South America, providing a biogeochemical dataset for ongoing and future (paleo)climate and environmental research. The fatty acid and n-alkane sediment leaf wax datasets are compared with latitudinal, orographic, and climatic (Mean Annual air Temperature [MAT] & Precipitation [MAP]) trends extracted from a monthly gridded reanalysis product of the Climate Forecast System Reanalysis. Fatty acids are more abundant than n-alkanes, with high abundances characterizing the transition between seasonal and year-round precipitation along the coast (ca. 42°S). The abundance of both leaf wax groups increases with MAP, suggesting precipitation as the main control on sedimentary leaf wax delivery to the lake sediments in the study area. The Carbon Preference Index (CPI) of the two groups show opposite trends, but both highlight the climate transition at ca. 42°S, and have a linear relationship with MAP. The opposite significant trends between n-alkane CPI and fatty acid CPI with MAP are interpreted as higher n-alkane production at much higher precipitation because leaf wax fatty acids are the precursors of n-alkanes. Hence, past periods during which these leaf waxes show opposite trends in CPI might be interpreted as a precipitation change, especially if additional information such as pollen, diatoms, chironomids and stable isotopes is available.
Distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids from soils and sediments from the same watershed are distinct regionally (central Chile) but not globally
2024, Dr. Contreras-Quintana, Sergio, Tejos-Alarcon, Eduardo, O’Beirne, Molly, Scott, Wesley, Araneda, A., Moscoso, J., Werne, Josef
Quantitative reconstructions of past continental climates are vital for understanding contemporary and past climate change. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are unique bacterial lipids that have been proposed as universal paleothermometers due to their correlation with temperature in modern settings. Thus, brGDGTs may serve as a crucial paleotemperature proxy for understanding past climate variations and improving regional climate projections, especially in critical but under constrained regions. That said, complications can arise in their application due to varying source contributions (e.g., soils vs. peats vs. lacustrine). As such, this study investigates brGDGT distributions in Chilean lake surface sediments and corresponding watershed soils to determine the source of brGDGTs to lake sediments. Global datasets of brGDGTs in lake sediments and soils were additionally compiled for comparison. Distinct brGDGT distributions in Chilean lakes and soils indicate minimal bias from soil inputs to the lacustrine sediments as well as in situ lacustrine production of brGDGTs, which supports the use of brGDGTs in lake sediments as reliable paleotemperature proxies in the region. The ΣIIIa/ΣIIa ratio, initially promising as a brGDGT source indicator in marine settings, shows global complexities in lacustrine settings, challenging the establishment of universal thresholds for source apportionment. That said, we show that the ratio can be successfully applied in Chilean lake surface sediments. Direct comparisons with watershed soils and further research are crucial for discerning brGDGT sources in lake sediments and improving paleotemperature reconstructions on regional and global scales moving forward. Overall, this study contributes valuable insights into brGDGT variability, essential for accurate paleoreconstructions.