Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids from soils and sediments from the same watershed are distinct regionally (central Chile) but not globally
    (Frontiers, 2024) ;
    Tejos-Alarcon, Eduardo
    ;
    O’Beirne, Molly
    ;
    Scott, Wesley
    ;
    Araneda, A.
    ;
    Moscoso, J.
    ;
    Werne, Josef
    Quantitative reconstructions of past continental climates are vital for understanding contemporary and past climate change. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are unique bacterial lipids that have been proposed as universal paleothermometers due to their correlation with temperature in modern settings. Thus, brGDGTs may serve as a crucial paleotemperature proxy for understanding past climate variations and improving regional climate projections, especially in critical but under constrained regions. That said, complications can arise in their application due to varying source contributions (e.g., soils vs. peats vs. lacustrine). As such, this study investigates brGDGT distributions in Chilean lake surface sediments and corresponding watershed soils to determine the source of brGDGTs to lake sediments. Global datasets of brGDGTs in lake sediments and soils were additionally compiled for comparison. Distinct brGDGT distributions in Chilean lakes and soils indicate minimal bias from soil inputs to the lacustrine sediments as well as in situ lacustrine production of brGDGTs, which supports the use of brGDGTs in lake sediments as reliable paleotemperature proxies in the region. The ΣIIIa/ΣIIa ratio, initially promising as a brGDGT source indicator in marine settings, shows global complexities in lacustrine settings, challenging the establishment of universal thresholds for source apportionment. That said, we show that the ratio can be successfully applied in Chilean lake surface sediments. Direct comparisons with watershed soils and further research are crucial for discerning brGDGT sources in lake sediments and improving paleotemperature reconstructions on regional and global scales moving forward. Overall, this study contributes valuable insights into brGDGT variability, essential for accurate paleoreconstructions.
  • Thumbnail Image
    Publication
    Lake water based isoscape in central-south Chile reflects meteoric water
    (Springer Nature Limited, 2021) ;
    Scott, Wesley
    ;
    Bowen, Gabriel
    ;
    Arnold, Elliott
    ;
    Bustamante-Ortega, Ramón
    ;
    Werne, Josef
    Warming across the globe is expected to alter the strength and amount of regional precipitation, but there is uncertainty associated with the magnitude of these expected changes, and also how these changes in temperature and the hydrologic cycle will affect humans. For example, the climate in central-south Chile is projected to become significantly warmer and drier over the next several decades in response to anthropogenically driven warming, but these anthropogenic changes are superimposed on natural climate variability. The stable isotope composition of meteoric water provides significant information regarding the moisture source, pathways, and rain-out history of an air mass, but precipitation samples suitable for stable isotope measurements require long-term placement of field equipment making them difficult to obtain. The International Atomic Energy Agency (IAEA) Global Network of Isotopes in Precipitation (GNIP) stations generate isotopic and ancillary data of precipitation from many locations around the world, but remote areas of developing countries like Chile typically have sparse networks of meteorological stations, which inhibit our ability to accurately model regional precipitation. Central-south Chile, in particular, has a sparse network of GNIP stations and, as a result, the isotopic composition of meteoric water is underrepresented in the global database complicating efforts to constrain modern day hydroclimate variability as well as paleohydrologic reconstruction for southern South America. In this study, we measured the stable isotope compositions of hydrogen (δ2H) and oxygen (δ18O) in surface lacustrine waters of central-south Chile to determine what physical and/or climatic features are the dominant controls on lacustrine δ18O and δ2H composition, assess whether or not the isotopic composition of the lakes record time-averaged isotope composition of meteoric water, and determine whether an isoscape map based on lake surface waters could predict the H and O isotope compositions of precipitation at the few GNIP stations in the region.