Options
Dr. Contreras-Quintana, Sergio
Nombre de publicación
Dr. Contreras-Quintana, Sergio
Nombre completo
Contreras Quintana, Sergio Hernán
Facultad
Email
scontreras@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationOrganic matter geochemical signatures (TOC, TN, C/N ratio, δ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes(Elsevier, 2018)
; ;Werne, Josef P. ;Araneda, A. ;Urrutia, R.Conejero, C. A.Paleolimnological studies in western South America, where meteorological stations are scarce, are critical to obtain more realistic and reliable regional reconstructions of past climate and environmental changes, including vegetation and water budget variability. However, climate and environmental geochemical indicators must be tested before they can be applied with confidence. Here we present a survey of lacustrine surface sediment (core top, 0 to ~1 cm) biogeochemical proxies (total organic carbon [TOC], total nitrogen [TN], carbon/nitrogen ratio [C/N ratio] and bulk organic δ13C and total δ15N) from a suite of 72 lakes spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, and conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest further south. Sedimentary data are compared to the latitudinal and orographic climatic trends of the region based on the climatology (precipitation and temperature) produced with Climate Forecast System Reanalysis (CFSR) data and the modern Southern Hemisphere Westerly Winds (SWW) location. The geochemical data show inflection points at ~42°S latitude and ~1500 m elevation that are likely related to the northern limit of influence of the SWW and elevation of the snow line, respectively. Overall the organic proxies were able to mimic climatic trends (Mean Annual Precipitation [MAP] and temperature [MAT]), indicating that they are a useful tool to be included in paleoclimatological reconstruction of the region. - PublicationFROG: A global machine-learning temperature calibration for branched GDGTs in soils and peats(Geochimica et Cosmochimica Acta, 2022)
;Véquaud, Pierre ;Thibault, Alexandre ;Derenne, Sylvie ;Anquetil, Christelle ;Collin, Sylvie; ;Nottingham, Andrew T. ;Sabatier, Pierre ;Werne, Josef P.Huguet, ArnaudBranched glycerol dialkyl glycerol tetraethers (brGDGTs) are a family of bacterial lipids which have emerged over time as robust temperature and pH paleoproxies in continental settings. Nevertheless, it was previously shown that other parameters than temperature and pH, such as soil moisture, thermal regime or vegetation can also influence the relative distribution of brGDGTs in soils and peats. This can explain a large part of the residual scatter in the global brGDGT calibrations with mean annual air temperature (MAAT) and pH in these settings. Despite improvements in brGDGT analytical methods and development of refined models, the root-mean-square error (RMSE) associated with global calibrations between brGDGT distribution and MAAT in soils and peats remains high ( 5 °C). The aim of the present study was to develop a new global terrestrial brGDGT temperature calibration from a worldwide extended dataset (i.e. 775 soil and peat samples, i.e. 112 samples added to the previously available global calibration) using a machine learning algorithm. Statistical analyses highlighted five clusters with different effects of potential confounding factors in addition to MAAT on the relative abundances of brGDGTs. The results also revealed the limitations of using a single index and a simple linear regression model to capture the response of brGDGTs to temperature changes. A new improved calibration based on a random forest algorithm was thus proposed, the so called random Forest Regression for PaleOMAAT using brGDGTs (FROG). This multi-factorial and non-parametric model allows to overcome the use of a single index, and to be more representative of the environmental complexity by taking into account the non-linear relationships between MAAT and the relative abundances of the individual brGDGTs. The FROG model represents a refined brGDGT temperature calibration (R2 = 0.8; RMSE = 4.01 °C) for soils and peats, more robust and accurate than previous global soil calibrations while being proposed on an extended dataset. This novel improved calibra- tion was further applied and validated on two paleo archives covering the last 110 kyr and the Pliocene, respectively.