Options
Dr. Contreras-Quintana, Sergio
Nombre de publicación
Dr. Contreras-Quintana, Sergio
Nombre completo
Contreras Quintana, Sergio Hernán
Facultad
Email
scontreras@ucsc.cl
ORCID
10 results
Research Outputs
Now showing 1 - 10 of 10
- PublicationMolecular n-alkyl leaf waxes of three dominant plants from the temperate forest in South AmericaThe n-alkyl leaf waxes of the temperate forest of South America are poorly studied, despite being a bio-geographically isolated forest spanning wide environmental conditions. To evaluate whether local species adaptation and environmental changes influence the n-alkyl leaf wax composition, we measured the molecular abundance and distribution of n-alkyl leaf waxes (n-alkanoic acids, n-alkanes and n-alka-nols) of three dominant native species from southern temperate forest in South America. We surveyed Araucaria araucana (n = 9), Nothofagus dombeyi (n = 17) and Chusquea sp. (n = 21) at different elevations. The relationship of n-alkyl leaf wax abundance and distribution with elevation is not significant in any species, except for n-alkane ACL (average chain length) in Chusquea sp. Significant correlations are found for n-alkanoic acid abundance with precipitation and aridity in Chusquea sp. and n-alkane abundance and ACL with temperature in A. araucana. These data suggest a species-specific response to environmental variables. The main similarity in the three species is a higher abundance of n-alkanoic acids (>60%) relative to other n-alkyl leaf waxes. Only n-alkanols are not correlated to any environmental variable, and neither ACL nor C max overlap among species. These results suggest n-alkanols as a potential chemotaxo-nomic indicator at a lower taxonomic level in the region.
- PublicationFatty acid biomarkers in three species inhabiting a high latitude Patagonian fjord (Yendegaia Fjord, Chile)(Springer, 2021)
;Ruiz Ruiz, Paula A.; ; ;Quiroga, EduardoRebolledo, LorenaThe study of fatty acid biomarkers in trophic structures at sub-polar latitudes is fundamental in describing energy fluxes across ecosystems characterized by complex inter-specific interactions. Due to the presence of certain essential fatty acids obtained exclusively from predator–prey interactions, fatty acid biomarkers are widely used to identify trophic interactions. This study analyzed fatty acid compositions in three species inhabiting a relatively pristine Patagonian fjord. This fjord is geographically difficult to access, so there are very little sampling opportunities, biological and oceanographic information. In the three species collected (Ctenodiscus australis (Loven in Lütken 1871) (Echinodermata, Asteroidea, Ctenodiscidae); Munida gregaria (Fabricius 1793) (Arthropoda, Malacostraca, Munididae); Eleginops maclovinus (Cuvier 1830) (Chordata, Actinopterygii, Eleginopsidae)) along this remote area were evaluated their fatty acid trophic markers as a tool to differentiate dietary components and dietary habits. The study reported significant differences in the amount of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA), with the highest concentrations of all fatty acids in M. gregaria. The last suggests that M. gregaria is considered as a good quality food source or biological component that might support the fjord trophic web in the Southern Hemisphere. The results describe diet compositions in sampled species, and differences among species for fatty acid compositions and proportions. This provides an initial basis for future modeling or projecting how benthic ecosystems of fjords and Patagonian channels respond to food intake, particularly in environments associated with glacial systems characterized by a low phytoplankton biomass and greater sensitivity to climate variability. - PublicationHydroclimate variations over the last 17,000 years as estimated by leaf waxes in rodent middens from the south-central Atacama Desert, Chile(Quaternary Science Reviews, 2023)
;Frugone-Álvarez, Matías; ;Meseguer-Ruiz, Oliver ;Tejos, Eduardo ;Delgado-Huertas, Antonio ;Valero-Garcés, Blas ;Díaz, Francisca ;Briceño, Matías ;Bustos-Morales, ManuelLatorre, ClaudioLeaf cuticular waxes are one of the most important environment-plant interaction structural systems that enable desert plants to withstand extreme climatic conditions. We present a long chain n-alkyl lipids study in fresh plant leaves and rodent palaeomiddens collected along an elevational gradient in the south-central Atacama Desert of Chile, covering six different vegetation belts: Steppe (4500-4000 m asl), Puna (4000-3300 m asl), pre-Puna (3300-2400 m asl), Absolute Desert (2400-1000 m asl) and Coastal Desert (1000-0 m asl). The 28 rodent palaeomiddens analyzed from Quebrada Incahuasi (25.6 °S, 3600 m asl) span the last 17,000 years. Modern-day distribution of long-chain n-alkanes and n-alkanoic acids varies among the dominant plant associations of the Atacama Desert. These plants show a species-specific chemotaxonomy linked to the climatic conditions. Furthermore, differences in average chain length (ACL) and carbon preference index (CPI) suggest that these plant communities are highly adapted to extreme environmental conditions. The sum of leaf wax n-alkanes was highest under wet conditions, while n-alkanoic acids (between n-C24 and n-C28) increased with hyperaridity. Similarly, analysis of n-alkane time series from palaeomiddens showed that the greatest changes in leaf wax n-alkane distributions (ACL and CPI) corresponded to the greatest increases in moisture during the Central Andean Pluvial Event (CAPE; between 18 and 9 ka cal BP) and the Late Holocene. The shift in the palaeomidden n-alkane distributions is corroborated by the relative abundance of rainfall-dependent extra-local taxa. This is the first study to report leaf wax content obtained from ancient rodent middens, and shows promising results as a robust hydroclimate proxy for the Atacama Desert region. - PublicationAbundance and distribution of plant derived leaf waxes (long chain n-alkanes & fatty acids) from lake surface sediments along the west coast of southern South America: Implications for environmental and climate reconstructions(Science of The Total Environment, 2023)
; ;Werne, Josef ;Araneda, A. ;Tejos, EduardoMoscoso, J.Southern South America is the only large landmass that extends through the core of the Southern Westerly Winds (SWW), controlling hydrological and ecosystem variability in the region. In fact, the vegetation along the west coast changes from Temperate and Valdivian Rain Forest to the North Patagonian Evergreen Forest (ca. 42°S) due to the latitudinal influence of the SWW. Climate is an important driver of organic matter accumulation in lakes, hence changes in vegetation would be recorded in lacustrine sedimentary archives. This study evaluated leaf waxes contained in lake surface sediments as indicators of climate change along the west coast of southern South America, providing a biogeochemical dataset for ongoing and future (paleo)climate and environmental research. The fatty acid and n-alkane sediment leaf wax datasets are compared with latitudinal, orographic, and climatic (Mean Annual air Temperature [MAT] & Precipitation [MAP]) trends extracted from a monthly gridded reanalysis product of the Climate Forecast System Reanalysis. Fatty acids are more abundant than n-alkanes, with high abundances characterizing the transition between seasonal and year-round precipitation along the coast (ca. 42°S). The abundance of both leaf wax groups increases with MAP, suggesting precipitation as the main control on sedimentary leaf wax delivery to the lake sediments in the study area. The Carbon Preference Index (CPI) of the two groups show opposite trends, but both highlight the climate transition at ca. 42°S, and have a linear relationship with MAP. The opposite significant trends between n-alkane CPI and fatty acid CPI with MAP are interpreted as higher n-alkane production at much higher precipitation because leaf wax fatty acids are the precursors of n-alkanes. Hence, past periods during which these leaf waxes show opposite trends in CPI might be interpreted as a precipitation change, especially if additional information such as pollen, diatoms, chironomids and stable isotopes is available. - PublicationFROG: A global machine-learning temperature calibration for branched GDGTs in soils and peats(Geochimica et Cosmochimica Acta, 2022)
;Véquaud, Pierre ;Thibault, Alexandre ;Derenne, Sylvie ;Anquetil, Christelle ;Collin, Sylvie; ;Nottingham, Andrew T. ;Sabatier, Pierre ;Werne, Josef P.Huguet, ArnaudBranched glycerol dialkyl glycerol tetraethers (brGDGTs) are a family of bacterial lipids which have emerged over time as robust temperature and pH paleoproxies in continental settings. Nevertheless, it was previously shown that other parameters than temperature and pH, such as soil moisture, thermal regime or vegetation can also influence the relative distribution of brGDGTs in soils and peats. This can explain a large part of the residual scatter in the global brGDGT calibrations with mean annual air temperature (MAAT) and pH in these settings. Despite improvements in brGDGT analytical methods and development of refined models, the root-mean-square error (RMSE) associated with global calibrations between brGDGT distribution and MAAT in soils and peats remains high ( 5 °C). The aim of the present study was to develop a new global terrestrial brGDGT temperature calibration from a worldwide extended dataset (i.e. 775 soil and peat samples, i.e. 112 samples added to the previously available global calibration) using a machine learning algorithm. Statistical analyses highlighted five clusters with different effects of potential confounding factors in addition to MAAT on the relative abundances of brGDGTs. The results also revealed the limitations of using a single index and a simple linear regression model to capture the response of brGDGTs to temperature changes. A new improved calibration based on a random forest algorithm was thus proposed, the so called random Forest Regression for PaleOMAAT using brGDGTs (FROG). This multi-factorial and non-parametric model allows to overcome the use of a single index, and to be more representative of the environmental complexity by taking into account the non-linear relationships between MAAT and the relative abundances of the individual brGDGTs. The FROG model represents a refined brGDGT temperature calibration (R2 = 0.8; RMSE = 4.01 °C) for soils and peats, more robust and accurate than previous global soil calibrations while being proposed on an extended dataset. This novel improved calibra- tion was further applied and validated on two paleo archives covering the last 110 kyr and the Pliocene, respectively. - PublicationTemporal changes of phytoplankton-derived sterols in suspended particulate matter and their implications as biomarkers for phytoplankton abundance in northern Patagonia, Reloncaví Estuarine System (RES), Chile(Elsevier, 2024)
; ;Luna, Felipe ;Arenas, Sara ;Barrera, Facundo ;Pérez-Santos, IvánEspinoza-González, OscarThe Northern Patagonia coast, characterized by an intricate interaction among terrestrial and marine systems such as Reloncaví Estuarine System (RES), present highly productive marine and aquaculture activities, having a significant socio-economic importance in Chile. Understanding the composition of Organic Matter (OM) in aquatic ecosystems is crucial for elucidating biogeochemical processes, and the use of lipid biomarkers, has proven valuable in identifying OM sources. This study investigates the relationship between phytoplankton biomass indicators, including phytoplankton abundance, chlorophyll-a, and sterol molecules synthesized in high percentages by phytoplankton cells, also known as phytoplankton-derived sterols at the RES. The RES encompasses the Reloncaví Fjord (RF) and the Reloncaví Sound (RS) and exhibits a high influenced by oceanic waters and freshwater discharge from rivers Spatio-temporal sampling was conducted during the austral spring, summer and winter expeditions of 2018 and 2019, at two sites in RS and RF mouth (RFm). Our findings reveal higher sterol concentration at RFm than RS. Notably, high sterol concentrations during austral summer season coinciding with increased phytoplankton abundances. Furthermore, higher concentrations of terrestrial-derived sterols such as β-sitosterol (C29Δ5) and stigmasterol (C29Δ5,22), at RFm site suggested an input of OM from the inner RF. Phytoplankton-derived sterols such as 24-methylenecholesterol (C28Δ5,24(28)) provide a reliable estimate of total diatom abundance at both sites (RFm and RS), though they showed a lower relationship with taxonomic subroups and phytoplankton classes in our study area. Hence, phytoplankton-derived sterols can be considered reliable diatom biomarkers, particularly in the RS, where the primary source of OM is predominantly marine, and even with high sterol degradation values at RES. Our study highlights the importance of interpreting changes in sterol abundances as phytoplankton community shifts. To avoid misinterpretation, it is essential to incorporate direct phytoplankton counts in elucidating the complex biosynthetic sources of sterols within the water column. - PublicationEvolution of the ecological niche behind the largest disjunct freshwater fish distribution in the world(British Ecological Society, 2024)
; ;Ramírez‐Álvarez, Rodrigo ;Peterson, TownsendGórski, Konrad1. Ecological processes that are behind distributions of species that inhabit isolated localities, complex disjunct distributions, remain poorly understood. Traditionally, vicariance and dispersion have been proposed as explanatory mechanisms that drive such distributions. However, to date, our understanding of the ecological processes driving evolution of ecological niches associated with disjunct distributions remains rudimentary. 2. Here, we propose a framework to deconstruct drivers of such distribution using World's most widespread freshwater fish Galaxias maculatus as a model and integrating marine and freshwater environments where its life cycle may occur. Specifically, we assessed ecological and historical factors (Gondwanan vicariance, marine dispersion) and potential dispersion (niche‐tracking) that explain its distribution in the Southern Hemisphere. 3. Estimated distribution was consistent with previously reported distribution and mainly driven by temperature and topography in freshwater environments and by primary productivity and nitrate in marine environments. Niche dynamics of G. maculatus provided evidence of synergy between vicariance and marine dispersion as explanatory mechanisms of its disjunct distribution, suggesting that its ecological niche was conserved since approximately 30 Ma ago. 4. This integrated assessment of ecological niche in marine and freshwater environments serves as a generic framework that may be applied to understand processes underpinning complex distributions of diadromous species. - PublicationBioenergetic traits of three keystone marine species in the food web of a pristine Patagonian fjord(Elsevier, 2021)
;Ruiz Ruiz, Paula A.; ;Quiroga, EduardoThe Patagonian fjords are high-latitude aquatic ecosystems, highly sensitive to climate change and play a key role in the exchange of organic matter and carbon flows between terrestrial and marine environments. The bioenergetic composition of species living in these ecosystems are fundamental to understanding the distribution, seasonal variations, and exchange of organic matter within benthic communities. This study reports on the bioenergetic characteristics (lipids, protein, glucose, and energy content) of three keystone species with different life-style and feeding habits: a benthic sea star (Ctenodiscus australis); squat lobster (Munida gregaria); and a Patagonian notothenioid (Eleginops maclovinus). Samples were obtained from the Yendegaia Fjord (54°40'S - 68°50′W) in Chilean Patagonia. Our results indicate that M. gregaria has higher concentrations of lipids, proteins, glucose, and total energy compared to either E. maclovinus or C. australis. The predominance of lipids in all species is possibly related to physiological characteristics and feeding strategies. Also, may be associated with the availability of food and environmental conditions typical of a fjord ecosystem and the reproductive stage in that they were collected. These results suggest that marine animals inhabiting glacially influenced environments with low temperature and low productivity, requires a convergent physiological strategy characterized by high levels of energy storage (i.e. lipids) for metabolism and key bioenergetic processes such as growth and reproduction. - PublicationOceanography time series reveals annual asynchrony input between oceanic and estuarine waters in Patagonian fjords(Elsevier, 2021)
; ;Barrera, Facundo ;Pérez-Santos, Iván ;Díaz, Patricio ;Silva, Nelson ;Garreaud, René ;Montero, Paulina ;Henríquez-Castillo, Carlos ;Linford, Pamela ;Amaya, Constanza ;Aracena, Claudia ;Pinilla, Elías ;Altamirano, Robinson ;Vallejos, Luis ;Pavez, JavieraMaulen, JuanThe postglacial Patagonian fjord system along the west coast of southern South America is one of the largest stretches of the southern hemisphere (SH) fjord belt, influenced by the SH westerly wind belt and continental freshwater input. This study reports a 3-year monthly time series (2017–2020) of physical and biogeochemical parameters obtained from the Reloncaví Marine Observatory (OMARE, Spanish acronym) at the northernmost embayment and fjord system of Patagonia. The main objective of this work was to understand the land–atmosphere–ocean interactions and to identify the mechanisms that modulate the density of phytoplankton. A key finding of this study was the seasonally varying asynchronous input of oceanic and estuarine water. Surface lower salinity and warmer estuarine water arrived in late winter to summer, contributing to water column stability, followed by subsurface higher salinity and less warmer oceanic water during fall–winter. In late winter 2019, an interannual change above the picnocline due to the record-high polarity of the Indian Ocean Dipole inhibited water column stability. The biogeochemical parameters (NO3−, NO2−, PO43−, Si(OH)4, pH, and dissolved oxygen) responded to the surface annual salinity variations, and oceanic water mass contributed greatly to the subsurface inorganic nutrient input. The water column N/P ratio indicated that no eutrophication occurred, even under intense aquaculture activity, likely because of the high ventilation dynamics of the Reloncaví Sound. Finally, a shift in phytoplankton composition, characterized by surface chlorophyll-a maxima in late winter and deepening of spring–summer blooms related to the physicochemical conditions of the water column, was observed. Our results support the ecosystem services provided by local oceanography processes in the north Patagonian fjords. Here, the anthropogenic impact caused by economic activities could be, in part, chemically reduced by the annual ventilation cycle mediated by the exchange of oceanic water masses into Patagonian fjords. - PublicationIntraspecific differences in leaf chemical traits from five common evergreen species in contrasting climate conditions (temperature and precipitation) from northern Patagonian rainforest (42–44°S)Background and aims: Soil properties and climate influence leaf chemical traits producing intraspecific variation in plants. Studies evaluating their importance in the South American Temperate Forest (STF) species are scarce. This study aimed to evaluate the intraspecific differences in five evergreen species of the rainforest considering two contrasting areas (i.e. temperature and precipitation), linking soil and climate with plants traits. Methods: Soil properties (Corg%, N%, C/N, δ13C, δ15N, pH and temperature), climate variables (mean annual precipitation and temperature [MAP; MAT]) and leaf chemical traits (C%, N% and P%, C/N, N/P, δ13C and δ15N) were measured and compared between two areas in the Northern Patagonia (42°- 44°S). In addition, the relationship of leaf chemical traits with soil and climate was assessed. Results: Significant differences were found in soil (Corg%, C/N and pH; p < 0.05) and climate (p < 0.05), with MAP identified as the most common factor controlling soil properties (Corg%, C/N and δ15N). Intraspecific differences in leaf chemical traits were found between areas, but not in all traits. The most common leaf chemical trait with significant differences was C%. Higher mean C% values were found in the island in plants and soils. High number of correlations (n = 13 correlations; p < 0.05) were found between leaf chemical traits. On the other hand, only MAP was a significant predictor of δ13C in the leaves. Conclusion: The leaf chemical traits variability suggests a species-specific response to the soil and climate conditions, with important influence of precipitation as the most common predictor of soil properties and δ13C in the leaves.