Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Probable Relationship between COVID-19, Pollutants and Meteorology: A Case Study at Santiago, Chile
    (Aerosol and Air Quality Research, 2021) ;
    Pacheco, Patricio R.
    ;
    Mera, Eduardo
    ;
    Parodi, MarĂ­a C.
    We present here a study about the possible spread of covid-19 pandemic between human’s beings through aerosols contained in urban air polluted by respirable particulate matter and tropospheric ozone, as well as the incidence of local meteorology in an area with orographic basin characteristics and in a certain period of time. Hourly time-series data of three meteorological variables—temperature, relative humidity, wind speed—and three pollutants—PM10, PM2.5 and O3—were considered together with hourly data from the highest number accumulated sick's in seven communes—chosen at random—in Santiago, Chile, studying a probable link between them. From the epidemic perspective, the infected patients number was linked to the hourly time-series of meteorological and pollutant variables, generating new time-series. Nonlinear analysis and the chaos theory formalism was applied to these new time-series, obtaining the largest Lyapunov exponent, correlation dimension, Kolmogorov entropy, Hurst exponent and the Lempel-Ziv complexity. Our preliminary results show meteorological and air pollution variables can be part of the elements fraction that give sustainability to the accumulated growth of infected patients and favor the pandemic spread, making the accumulated sick’s curve chaotic and complex. In addition, environmental pollution could worsen disease conditions like coronavirus (COVID-19) infection. For all time-series, the Lempel-Ziv complexity turned out to be between 0 and 1 which is indicative of connectivity and chaos. The largest Lyapunov exponent as well as the Kolmogorov entropy were positive which also exhibits chaos. The Hurst exponent was found to be greater than 0.5 and less than 1 for all time-series, indicating positive long-term autocorrelation. Finally, the correlation dimension was less than 5, revealing that new time-series constructed are not random. © 2021, AAGR Aerosol and Air Quality Research. All rights reserved.
  • Thumbnail Image
    Publication
    Urban densification effect on micrometeorology in Santiago, Chile: A comparative study based on Chaos Theory
    (Sustainability, 2022)
    Pacheco, Patricio
    ;
    Mera, Eduardo
    ;
    The concentration distribution of anthropocentric pollutants is favored by urban densification, affecting the micrometeorology in big cities. To examine this condition, chaos theory was applied to time series of measurements of urban meteorology and pollutants of six communes of the Metropolitan Region of Santiago de Chile, in two periods: 2010–2013 and 2017–2020. Each commune contributes, per period, six different time series: three for the meteorological variables (temperature, relative humidity, and magnitude wind speed) and three for the atmospheric pollutant concentrations (PM10, PM2.5, and CO). This qualitative study corroborates that each of the time series is chaotic through the calculation of chaotic parameters: Lyapunov exponent, correlation dimension, Hurst coefficient, correlation entropy, Lempel–Ziv complexity and fractal dimension. The variation in the chaotic parameters between the two periods can be interpreted in relation to the roughness change due to urban densification. More specific parameters, constructed from the Kolmogorov entropies and the fractal dimensions of the time series, show modifications due to the increase in the built surface in the most current period. This variation also extends to micrometeorology, as is clear from the Lempel–Ziv complexity and the Hurst coefficient. The qualitative picture constructed using chaos theory reveals that human interaction with nature affects diversity and sustainability and generates irreversible processes.