Options
Ph.D. Vera-Escalona, Iván
Nombre de publicación
Ph.D. Vera-Escalona, Iván
Nombre completo
Vera Escalona, Iván
Facultad
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationOccurrence of bacteria potentially pathogenic to humans in a harvested intertidal sea snail(Taylor & Francis, 2022)
;Sousa, Ricardo ;Vasconcelos, Joana; Riera, RodrigoMicrobes associated with marine invertebrates play a key role in the physiological and biochemical processes of the host, and can be responsible for food-borne diseases in humans. Raw invertebrates are a common component of coastal gastronomy worldwide and their consumption could represent a potential risk to humans if their microbiome hosts infectious bacteria. However, these species’ microbiome composition is usually unknown. In this study, we sequenced the 16S gene to characterise the microbiome of the digestive system and gonads of the commercially-exploited sea snail Phorcus sauciatus from the Macaronesian islands and mainland Portugal. The goal was to identify bacteria that might pose a threat to humans. In total, 910 OTUs were identified, thirty-two of which were found to be classified as Risk level-1 and -2 species. Among these, twenty pathogenic bacterial strains were found in high relative abundance and identified as potential drivers of human diseases, including Micrococcus luteus and Serratia marcescens. Here, we discuss how our findings on the occurrence of these bacteria could seriously affect humans. Our results are relevant beyond the scope of this study, as this work might also pave the way for uncovering further implications on the raw consumption of other shellfish and invertebrate species. - PublicationInvasive species and postglacial colonization: Their effects on the genetic diversity of a Patagonian fishThe present distribution of Patagonian species is the result of a complex history involving Quaternary refugial populations, Holocene range expansions and demographic changes occurring during the Anthropocene. Invasive salmonids were introduced in Patagonia during the last century, occupying most rivers and lakes, preying on and competing with native species, including the fish Galaxias platei. Here, we used G. platei as a case study to understand how long-term (i.e. population differentiation during the Holocene) and short-term historical processes (salmonid introductions) affect genetic diversity. Using a suite of microsatellite markers, we found that the number of alleles is negatively correlated with the presence of salmonids (short-term processes), with G. platei populations from lakes with salmonids exhibiting significantly lower genetic diversity than populations from lakes without salmonids. Simulations (100 years backwards) showed that this difference in genetic diversity can be explained by a 99% reduction in population size. Allelic richness and observed heterozygosities were also negatively correlated with the presence of salmonids, but also positively correlated with long-term processes linked to Quaternary glaciations. Our results show how different genetic parameters can help identify processes taking place at different scales and their importance in terms of conservation.