Research Outputs

Now showing 1 - 6 of 6
  • Publication
    A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations
    (Journal of Scientific Computing, 2020) ;
    Gatica, Gabriel
    ;
    Oyarzúa, Ricardo
    ;
    Sánchez, Nestor
    We propose and analyze a new mixed finite element method for the problem of steady double-diffusive convection in a fluid-saturated porous medium. More precisely, the model is described by the coupling of the Brinkman–Forchheimer and double-diffusion equations, in which the originally sought variables are the velocity and pressure of the fluid, and the temperature and concentration of a solute. Our approach is based on the introduction of the further unknowns given by the fluid pseudostress tensor, and the pseudoheat and pseudodiffusive vectors, thus yielding a fully-mixed formulation. Furthermore, since the nonlinear term in the Brinkman–Forchheimer equation requires the velocity to live in a smaller space than usual, we partially augment the variational formulation with suitable Galerkin type terms, which forces both the temperature and concentration scalar fields to live in \(\mathrm {L}^4\). As a consequence, the aforementioned pseudoheat and pseudodiffusive vectors live in a suitable \(\mathrm {H}(\mathrm {div})\)-type Banach space. The resulting augmented scheme is written equivalently as a fixed point equation, so that the well-known Schauder and Banach theorems, combined with the Lax–Milgram and Banach–Nečas–Babuška theorems, allow to prove the unique solvability of the continuous problem. As for the associated Galerkin scheme we utilize Raviart–Thomas spaces of order \(k\ge 0\) for approximating the pseudostress tensor, as well as the pseudoheat and pseudodiffusive vectors, whereas continuous piecewise polynomials of degree \(\le k + 1\) are employed for the velocity, and piecewise polynomials of degree \(\le k\) for the temperature and concentration fields. In turn, the existence and uniqueness of the discrete solution is established similarly to its continuous counterpart, applying in this case the Brouwer and Banach fixed-point theorems, respectively. Finally, we derive optimal a priori error estimates and provide several numerical results confirming the theoretical rates of convergence and illustrating the performance and flexibility of the method.
  • Publication
    New mixed finite element methods for the coupled convective Brinkman-Forchheimer and double-diffusion equations
    (Springer Nature, 2023) ;
    Carrasco, Sergio
    ;
    Gatica, Gabriel
    In this paper we introduce and analyze new Banach spaces-based mixed finite element methods for the stationary nonlinear problem arising from the coupling of the convective Brinkman-Forchheimer equations with a double diffusion phenomenon. Besides the velocity and pressure variables, the symmetric stress and the skew-symmetric vorticity tensors are introduced as auxiliary unknowns of the fluid. Thus, the incompressibility condition allows to eliminate the pressure, which, along with the velocity gradient and the shear stress, can be computed afterwards via postprocessing formulae depending on the velocity and the aforementioned new tensors. Regarding the diffusive part of the coupled model, and additionally to the temperature and concentration of the solute, their gradients and pseudoheat/pseudodiffusion vectors are incorporated as further unknowns as well. The resulting mixed variational formulation, settled within a Banach spaces framework, consists of a nonlinear perturbation of, in turn, a nonlinearly perturbed saddle-point scheme, coupled with a usual saddle-point system. A fixed-point strategy, combined with classical and recent solvability results for suitable linearizations of the decoupled problems, including in particular, the Banach-Nečas-Babuška theorem and the Babuška-Brezzi theory, are employed to prove, jointly with the Banach fixed-point theorem, the well-posedness of the continuous and discrete formulations. Both PEERS and AFW elements of order l>0 for the fluid variables, and piecewise polynomials of degree
  • Publication
    A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem
    (Calcolo, 2022) ;
    Benavides, Gonzalo
    ;
    Gatica, Gabriel
    ;
    Hopper, Alejandro
    We propose and analyze a new mixed finite element method for the coupling of the Stokes equations with a transport problem modelled by a scalar nonlinear convection–diffusion problem. Our approach is based on the introduction of the Cauchy fluid stress and two vector unknowns involving the gradient and the total flux of the concentration. The introduction of these further unknowns lead to a mixed formulation in a Banach space framework in both Stokes and transport equations, where the aforementioned stress tensor and vector unknowns, together with the velocity and the concentration, are the main unknowns of the system. In this way, and differently from the techniques previously developed for this and related coupled problems, no augmentation procedure needs to be incorporated now into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that the well-known Banach theorem, combined with Babuška–Brezzi’s theory in Banach spaces, classical results on nonlinear monotone operators and certain regularity assumptions, are applied to prove the unique solvability of the continuous system. As for the associated Galerkin scheme, whose solvability is established similarly to the continuous case by using the Brouwer fixed-point theorem, we employ Raviart–Thomas approximations of order for the stress and total flux, and discontinuous piecewise polynomials of degree k for the velocity, concentration, and concentration gradient. With this choice of spaces, momentum is conserved in both Stokes and transport equations if the external forces belong to the piecewise constants and concentration discrete space, respectively, which constitutes one of the main features of our approach. Finally, we derive optimal a priori error estimates and provide several numerical results illustrating the good performance of the scheme and confirming the theoretical rates of convergence.
  • Publication
    A Banach spaces-based mixed finite element method for the stationary convective Brinkman-Forchheimer problem
    We propose and analyze a new mixed finite element method for the nonlinear problem given by the stationary convective Brinkman–Forchheimer equations. In addition to the original fluid variables, the pseudostress is introduced as an auxiliary unknown, and then the incompressibility condition is used to eliminate the pressure, which is computed afterwards by a postprocessing formula depending on the aforementioned tensor and the velocity. As a consequence, we obtain a mixed variational formulation consisting of a nonlinear perturbation of, in turn, a perturbed saddle point problem in a Banach spaces framework. In this way, and differently from the techniques previously developed for this model, no augmentation procedure needs to be incorporated into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that recently established solvability results for perturbed saddle-point problems in Banach spaces, along with the well-known Banach–Nečas–Babuška and Banach theorems, are applied to prove the well-posedness of the continuous and discrete systems. The finite element discretization involves Raviart–Thomas elements of order for the pseudostress tensor and discontinuous piecewise polynomial elements of degree for the velocity. Stability, convergence, and optimal a priori error estimates for the associated Galerkin scheme are obtained. Numerical examples confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method. In particular, the case of flow through a 2D porous media with fracture networks is considered.
  • Thumbnail Image
    Publication
    A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman-Forchheimer and double-diffusion equations
    (ESAIM: Mathematical Modelling and Numerical Analysis, 2021) ;
    Gatica, Gabriel
    ;
    Ortega, Juan
    We propose and analyze a new mixed finite element method for the nonlinear problem given by the coupling of the steady Brinkman–Forchheimer and double-diffusion equations. Besides the velocity, temperature, and concentration, our approach introduces the velocity gradient, the pseudostress tensor, and a pair of vectors involving the temperature/concentration, its gradient and the velocity, as further unknowns. As a consequence, we obtain a fully mixed variational formulation presenting a Banach spaces framework in each set of equations. In this way, and differently from the techniques previously developed for this and related coupled problems, no augmentation procedure needs to be incorporated now into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that the well-known Banach theorem, combined with classical results on nonlinear monotone operators and Babuˇ ska–Brezzi’s theory in Banach spaces, are applied to prove the unique solvability of the continuous and discrete systems. Appropriate finite element subspaces satisfying the required discrete inf-sup conditions are specified, and optimal a priori error estimates are derived. Several numerical examples confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method.
  • Publication
    A three-field mixed finite element method for the convective Brinkman–Forchheimer problem with varying porosity
    (Elsevier, 2024) ;
    Gatica, Gabriel
    ;
    Ortega, Juan
    In this paper we present and analyze a new mixed finite element method for the nonlinear problem given by the stationary convective Brinkman–Forchheimer equations with varying porosity. Our approach is based on the introduction of the pseudostress and the gradient of the porosity times the velocity, as further unknowns. As a consequence, we obtain a mixed variational formulation within a Banach spaces framework, with the velocity and the aforementioned tensors as the only unknowns. The pressure, the velocity gradient, the vorticity, and the shear stress can be computed afterwards via postprocessing formulae. A fixed-point strategy, along with monotone operators theory and the classical Banach theorem, are employed to prove the well-posedness of the continuous and discrete systems. Specific finite element subspaces satisfying the required discrete stability condition are defined, and optimal a priori error estimates are derived. Finally, several numerical examples illustrating the performance and flexibility of the method and confirming the theoretical rates of convergence, are reported.