Research Outputs

Now showing 1 - 2 of 2
  • Publication
    A three-field mixed finite element method for the convective Brinkman–Forchheimer problem with varying porosity
    (Elsevier, 2024) ;
    Gatica, Gabriel
    ;
    Ortega, Juan
    In this paper we present and analyze a new mixed finite element method for the nonlinear problem given by the stationary convective Brinkman–Forchheimer equations with varying porosity. Our approach is based on the introduction of the pseudostress and the gradient of the porosity times the velocity, as further unknowns. As a consequence, we obtain a mixed variational formulation within a Banach spaces framework, with the velocity and the aforementioned tensors as the only unknowns. The pressure, the velocity gradient, the vorticity, and the shear stress can be computed afterwards via postprocessing formulae. A fixed-point strategy, along with monotone operators theory and the classical Banach theorem, are employed to prove the well-posedness of the continuous and discrete systems. Specific finite element subspaces satisfying the required discrete stability condition are defined, and optimal a priori error estimates are derived. Finally, several numerical examples illustrating the performance and flexibility of the method and confirming the theoretical rates of convergence, are reported.
  • Publication
    A posteriori error analysis of a Banach spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous medium
    (Computational Geosciences, 2023) ;
    Gatica, Gabriel
    ;
    Ortega, Juan
    In this paper we consider a Banach spaces-based fully-mixed variational formulation that has been recently proposed for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations, and develop the first reliable and efficient residual-based a posteriori error estimator for the 2D and 3D versions of the associated mixed finite element scheme. For the reliability analysis, and due to the nonlinear nature of the problem, we employ the strong monotonicity of the operator involving the Forchheimer term, in addition to inf-sup conditions of some of the resulting bilinear forms, along with a stable Helmholtz decomposition in nonstandard Banach spaces, which, in turn, having been recently derived, constitutes another distinctive feature of the paper, and local approximation properties of the Raviart–Thomas and Clément interpolants. On the other hand, inverse inequalities, the localization technique through bubble functions, and known results from previous works, are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimator and illustrating the performance of the associated adaptive algorithms, are reported. In particular, the case of flow through a 2D porous media with an irregular channel networks is considered.