Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman-Forchheimer and double-diffusion equations
    (ESAIM: Mathematical Modelling and Numerical Analysis, 2021) ;
    Gatica, Gabriel
    ;
    Ortega, Juan
    We propose and analyze a new mixed finite element method for the nonlinear problem given by the coupling of the steady Brinkman–Forchheimer and double-diffusion equations. Besides the velocity, temperature, and concentration, our approach introduces the velocity gradient, the pseudostress tensor, and a pair of vectors involving the temperature/concentration, its gradient and the velocity, as further unknowns. As a consequence, we obtain a fully mixed variational formulation presenting a Banach spaces framework in each set of equations. In this way, and differently from the techniques previously developed for this and related coupled problems, no augmentation procedure needs to be incorporated now into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that the well-known Banach theorem, combined with classical results on nonlinear monotone operators and Babuˇ ska–Brezzi’s theory in Banach spaces, are applied to prove the unique solvability of the continuous and discrete systems. Appropriate finite element subspaces satisfying the required discrete inf-sup conditions are specified, and optimal a priori error estimates are derived. Several numerical examples confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method.
  • Publication
    A posteriori error analysis of a Banach spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous medium
    (Computational Geosciences, 2023) ;
    Gatica, Gabriel
    ;
    Ortega, Juan
    In this paper we consider a Banach spaces-based fully-mixed variational formulation that has been recently proposed for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations, and develop the first reliable and efficient residual-based a posteriori error estimator for the 2D and 3D versions of the associated mixed finite element scheme. For the reliability analysis, and due to the nonlinear nature of the problem, we employ the strong monotonicity of the operator involving the Forchheimer term, in addition to inf-sup conditions of some of the resulting bilinear forms, along with a stable Helmholtz decomposition in nonstandard Banach spaces, which, in turn, having been recently derived, constitutes another distinctive feature of the paper, and local approximation properties of the Raviart–Thomas and Clément interpolants. On the other hand, inverse inequalities, the localization technique through bubble functions, and known results from previous works, are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimator and illustrating the performance of the associated adaptive algorithms, are reported. In particular, the case of flow through a 2D porous media with an irregular channel networks is considered.