Options
Dr. Caucao-Paillán, Sergio
Nombre de publicación
Dr. Caucao-Paillán, Sergio
Nombre completo
Caucao Paillán, Sergio Andrés
Facultad
Email
scaucao@ucsc.cl
ORCID
4 results
Research Outputs
Now showing 1 - 4 of 4
- PublicationA fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations(Journal of Scientific Computing, 2020)
; ;Gatica, Gabriel ;Oyarzúa, RicardoSánchez, NestorWe propose and analyze a new mixed finite element method for the problem of steady double-diffusive convection in a fluid-saturated porous medium. More precisely, the model is described by the coupling of the Brinkman–Forchheimer and double-diffusion equations, in which the originally sought variables are the velocity and pressure of the fluid, and the temperature and concentration of a solute. Our approach is based on the introduction of the further unknowns given by the fluid pseudostress tensor, and the pseudoheat and pseudodiffusive vectors, thus yielding a fully-mixed formulation. Furthermore, since the nonlinear term in the Brinkman–Forchheimer equation requires the velocity to live in a smaller space than usual, we partially augment the variational formulation with suitable Galerkin type terms, which forces both the temperature and concentration scalar fields to live in \(\mathrm {L}^4\). As a consequence, the aforementioned pseudoheat and pseudodiffusive vectors live in a suitable \(\mathrm {H}(\mathrm {div})\)-type Banach space. The resulting augmented scheme is written equivalently as a fixed point equation, so that the well-known Schauder and Banach theorems, combined with the Lax–Milgram and Banach–Nečas–Babuška theorems, allow to prove the unique solvability of the continuous problem. As for the associated Galerkin scheme we utilize Raviart–Thomas spaces of order \(k\ge 0\) for approximating the pseudostress tensor, as well as the pseudoheat and pseudodiffusive vectors, whereas continuous piecewise polynomials of degree \(\le k + 1\) are employed for the velocity, and piecewise polynomials of degree \(\le k\) for the temperature and concentration fields. In turn, the existence and uniqueness of the discrete solution is established similarly to its continuous counterpart, applying in this case the Brouwer and Banach fixed-point theorems, respectively. Finally, we derive optimal a priori error estimates and provide several numerical results confirming the theoretical rates of convergence and illustrating the performance and flexibility of the method. - PublicationA three-field Banach spaces-based mixed formulation for the unsteady Brinkman-Forchheimer equations(Computer Methods in Applied Mechanics and Engineering, 2022)
; ;Oyarzúa, Ricardo ;Villa-Fuentes, SegundoYotov, IvanWe propose and analyze a new mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Besides the velocity, our approach introduces the velocity gradient and a pseudostress tensor as further unknowns. As a consequence, we obtain a three-field Banach spaces-based mixed variational formulation, where the aforementioned variables are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation, and derive the corresponding stability bounds, employing classical results on nonlinear monotone operators. We then propose a semidiscrete continuous-in-time approximation on simplicial grids based on the Raviart–Thomas elements of degree k ≥ 0 for the pseudostress tensor and discontinuous piecewise polynomials of degree k for the velocity and the velocity gradient. In addition, by means of the backward Euler time discretization, we introduce a fully discrete finite element scheme. We prove wellposedness and derive the stability bounds for both schemes, and under a quasi-uniformity assumption on the mesh, we establish the corresponding error estimates. We provide several numerical results verifying the theoretical rates of convergence and illustrating the performance and flexibility of the method for a range of domain configurations and model parameters. - PublicationA posteriori error analysis of a mixed finite element method for the coupled Brinkman-Forchheimer and double-diffusion equations(Journal of Scientific Computing, 2022)
; ;Gatica, Gabriel ;Oyarzúa, RicardoZúñiga, PauloIn this paper we consider a partially augmented fully-mixed variational formulation that has been recently proposed for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations, and develop an a posteriori error analysis for the 2D and 3D versions of the associated mixed finite element scheme. Indeed, we derive two reliable and efficient residual-based a posteriori error estimators for this problem on arbitrary (convex or non-convex) polygonal and polyhedral regions. The reliability of the proposed estimators draws mainly upon the uniform ellipticity and inf-sup condition of the forms involved, a suitable assumption on the data, stable Helmholtz decompositions in Hilbert and Banach frameworks, and the local approximation properties of the Clément and Raviart–Thomas operators. In turn, inverse inequalities, the localization technique based on bubble functions, and known results from previous works, are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimators and illustrating the performance of the associated adaptive algorithms, are reported. In particular, the case of flow through a 3D porous media with channel networks is considered. - PublicationA conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem(ESAIM: Mathematical Modelling and Numerical Analysis, 2020)
; ;Discacciati, Marco ;Gatica, GabrielOyarzúa, RicardoIn this work we present and analyse a mixed finite element method for the coupling of fluid flow with porous media flow. The flows are governed by the Navier–Stokes and the Darcy–Forchheimer equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman law. We consider the standard mixed formulation in the Navier–Stokes domain and the dual-mixed one in the Darcy–Forchheimer region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi–Raugel and Raviart–Thomas elements for the velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, and a priori error estimates for the associated Galerkin scheme. Finally, we report some numerical examples confirming the predicted rates of convergence, and illustrating the performance of the method.