Research Outputs

Now showing 1 - 8 of 8
No Thumbnail Available
Publication

A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations

2020, Dr. Caucao-Paillán, Sergio, Gatica, Gabriel, Oyarzúa, Ricardo, Sánchez, Nestor

We propose and analyze a new mixed finite element method for the problem of steady double-diffusive convection in a fluid-saturated porous medium. More precisely, the model is described by the coupling of the Brinkman–Forchheimer and double-diffusion equations, in which the originally sought variables are the velocity and pressure of the fluid, and the temperature and concentration of a solute. Our approach is based on the introduction of the further unknowns given by the fluid pseudostress tensor, and the pseudoheat and pseudodiffusive vectors, thus yielding a fully-mixed formulation. Furthermore, since the nonlinear term in the Brinkman–Forchheimer equation requires the velocity to live in a smaller space than usual, we partially augment the variational formulation with suitable Galerkin type terms, which forces both the temperature and concentration scalar fields to live in \(\mathrm {L}^4\). As a consequence, the aforementioned pseudoheat and pseudodiffusive vectors live in a suitable \(\mathrm {H}(\mathrm {div})\)-type Banach space. The resulting augmented scheme is written equivalently as a fixed point equation, so that the well-known Schauder and Banach theorems, combined with the Lax–Milgram and Banach–Nečas–Babuška theorems, allow to prove the unique solvability of the continuous problem. As for the associated Galerkin scheme we utilize Raviart–Thomas spaces of order \(k\ge 0\) for approximating the pseudostress tensor, as well as the pseudoheat and pseudodiffusive vectors, whereas continuous piecewise polynomials of degree \(\le k + 1\) are employed for the velocity, and piecewise polynomials of degree \(\le k\) for the temperature and concentration fields. In turn, the existence and uniqueness of the discrete solution is established similarly to its continuous counterpart, applying in this case the Brouwer and Banach fixed-point theorems, respectively. Finally, we derive optimal a priori error estimates and provide several numerical results confirming the theoretical rates of convergence and illustrating the performance and flexibility of the method.

No Thumbnail Available
Publication

A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy

2020, Dr. Caucao-Paillán, Sergio, Oyarzúa, Ricardo, Villa‑Fuentes, Segundo

In this work we present a new mixed finite element method for a class of steady-state natural convection models describing the behavior of non-isothermal incompressible fluids subject to a heat source. Our approach is based on the introduction of a modified pseudostress tensor depending on the pressure, and the diffusive and convective terms of the Navier–Stokes equations for the fluid and a vector unknown involving the temperature, its gradient and the velocity. The introduction of these further unknowns lead to a mixed formulation where the aforementioned pseudostress tensor and vector unknown, together with the velocity and the temperature, are the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree k for the pseudostress tensor and the vector unknown, and discontinuous piece-wise polynomial elements of degree k for the velocity and temperature. With this choice of spaces, both, momentum and thermal energy, are conserved if the external forces belong to the velocity and temperature discrete spaces, respectively, which constitutes one of the main feature of our approach. We prove unique solvability for both, the continuous and discrete problems and provide the corresponding convergence analysis. Further variables of interest, such as the fluid pressure, the fluid vorticity, the fluid velocity gradient, and the heat-flux can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. Finally, several numerical results illustrating the performance of the method are provided.

No Thumbnail Available
Publication

A posteriori error analysis of a mixed finite element method for the coupled Brinkman-Forchheimer and double-diffusion equations

2022, Dr. Caucao-Paillán, Sergio, Gatica, Gabriel, Oyarzúa, Ricardo, Zúñiga, Paulo

In this paper we consider a partially augmented fully-mixed variational formulation that has been recently proposed for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations, and develop an a posteriori error analysis for the 2D and 3D versions of the associated mixed finite element scheme. Indeed, we derive two reliable and efficient residual-based a posteriori error estimators for this problem on arbitrary (convex or non-convex) polygonal and polyhedral regions. The reliability of the proposed estimators draws mainly upon the uniform ellipticity and inf-sup condition of the forms involved, a suitable assumption on the data, stable Helmholtz decompositions in Hilbert and Banach frameworks, and the local approximation properties of the Clément and Raviart–Thomas operators. In turn, inverse inequalities, the localization technique based on bubble functions, and known results from previous works, are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimators and illustrating the performance of the associated adaptive algorithms, are reported. In particular, the case of flow through a 3D porous media with channel networks is considered.

No Thumbnail Available
Publication

A three-field Banach spaces-based mixed formulation for the unsteady Brinkman-Forchheimer equations

2022, Dr. Caucao-Paillán, Sergio, Oyarzúa, Ricardo, Villa-Fuentes, Segundo, Yotov, Ivan

We propose and analyze a new mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Besides the velocity, our approach introduces the velocity gradient and a pseudostress tensor as further unknowns. As a consequence, we obtain a three-field Banach spaces-based mixed variational formulation, where the aforementioned variables are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation, and derive the corresponding stability bounds, employing classical results on nonlinear monotone operators. We then propose a semidiscrete continuous-in-time approximation on simplicial grids based on the Raviart–Thomas elements of degree k ≥ 0 for the pseudostress tensor and discontinuous piecewise polynomials of degree k for the velocity and the velocity gradient. In addition, by means of the backward Euler time discretization, we introduce a fully discrete finite element scheme. We prove wellposedness and derive the stability bounds for both schemes, and under a quasi-uniformity assumption on the mesh, we establish the corresponding error estimates. We provide several numerical results verifying the theoretical rates of convergence and illustrating the performance and flexibility of the method for a range of domain configurations and model parameters.

No Thumbnail Available
Publication

A posteriori error analysis of a momentum and thermal energy conservative mixed FEM for the Boussinesq equations

2022, Dr. Caucao-Paillán, Sergio, Oyarzúa, Ricardo, Villa-Fuentes, Segundo

In this paper we complement the study of a new mixed finite element scheme, allowing conservation of momentum and thermal energy, for the Boussinesq model describing natural convection and derive a reliable and efficient residual-based a posteriori error estimator for the corresponding Galerkin scheme in two and three dimensions. More precisely, by extending standard techniques commonly used on Hilbert spaces to the case of Banach spaces, such as local estimates, suitable Helmholtz decompositions and the local approximation properties of the Clément and Raviart–Thomas operators, we derive the aforementioned a posteriori error estimator on arbitrary (convex or non-convex) polygonal and polyhedral regions. In turn, inverse inequalities, the localization technique based on bubble functions, and known results from previous works, are employed to prove the local efficiency of the proposed a posteriori error estimator. Finally, to illustrate the performance of the adaptive algorithm based on the proposed a posteriori error indicator and to corroborate the theoretical results, we provide some numerical examples.

No Thumbnail Available
Publication

A conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem

2020, Dr. Caucao-Paillán, Sergio, Discacciati, Marco, Gatica, Gabriel, Oyarzúa, Ricardo

In this work we present and analyse a mixed finite element method for the coupling of fluid flow with porous media flow. The flows are governed by the Navier–Stokes and the Darcy–Forchheimer equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman law. We consider the standard mixed formulation in the Navier–Stokes domain and the dual-mixed one in the Darcy–Forchheimer region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi–Raugel and Raviart–Thomas elements for the velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, and a priori error estimates for the associated Galerkin scheme. Finally, we report some numerical examples confirming the predicted rates of convergence, and illustrating the performance of the method.

Thumbnail Image
Publication

Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations

2021, Dr. Caucao-Paillán, Sergio, Gatica, Gabriel, Oyarzúa, Ricardo, Sandoval, Felipe

In this paper we consider a mixed variational formulation that have been recently proposed for the coupling of the Navier–Stokes and Darcy–Forchheimer equations, and derive, though in a non-standard sense, a reliable and efficient residual-baseda posteriorierror estimator suitable for an adaptive mesh-refinement method. For the reliability estimate, which holds with respect to the square root of the error estimator, we make use of the inf-sup condition and the strict monotonicity of the operators involved, a suitable Helmholtz decomposition in non-standard Banach spaces in the porous medium, local approximation properties of the Clément interpolant and Raviart–Thomas operator, and a smallness assumption on the data. In turn, inverse inequalities, the localization technique based on triangle-bubble and edge-bubble functions in localLpspaces, are the main tools for developing the efficiency analysis, which is valid for the error estimator itself up to a suitable additional error term. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported.

No Thumbnail Available
Publication

A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier-Stokes problem

2022, Dra. Camaño-Valenzuela, Jessika, Dr. Caucao-Paillán, Sergio, Oyarzúa, Ricardo, Villa-Fuentes, Segundo

In this paper we develop an a posteriori error analysis of a new momentum conservative mixed finite element method recently introduced for the steady-state Navier–Stokes problem in two and three dimensions. More precisely, by extending standard techniques commonly used on Hilbert spaces to the case of Banach spaces, such as local estimates, and suitable Helmholtz decompositions, we derive a reliable and efficient residual-based a posteriori error estimator for the corresponding mixed finite element scheme on arbitrary (convex or non-convex) polygonal and polyhedral regions. On the other hand, inverse inequalities, the localization technique based on bubble functions, among other tools, are employed to prove the efficiency of the proposed a posteriori error indicator. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported.