Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations
    (EDP Sciences, 2021) ;
    Gatica, Gabriel
    ;
    Oyarzúa, Ricardo
    ;
    Sandoval, Felipe
    In this paper we consider a mixed variational formulation that have been recently proposed for the coupling of the Navier–Stokes and Darcy–Forchheimer equations, and derive, though in a non-standard sense, a reliable and efficient residual-baseda posteriorierror estimator suitable for an adaptive mesh-refinement method. For the reliability estimate, which holds with respect to the square root of the error estimator, we make use of the inf-sup condition and the strict monotonicity of the operators involved, a suitable Helmholtz decomposition in non-standard Banach spaces in the porous medium, local approximation properties of the Clément interpolant and Raviart–Thomas operator, and a smallness assumption on the data. In turn, inverse inequalities, the localization technique based on triangle-bubble and edge-bubble functions in localLpspaces, are the main tools for developing the efficiency analysis, which is valid for the error estimator itself up to a suitable additional error term. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported.
  • Publication
    A fully-mixed finite element method for the coupling of the Navier–Stokes and Darcy–Forchheimer equations
    (Wiley, 2021) ;
    Gatica, Gabriel N.
    ;
    Sandoval, Felipe
    In this work we present and analyze a fully-mixed formulation for the nonlinear model given by the coupling of the Navier–Stokes and Darcy–Forchheimer equations with the Beavers–Joseph–Saffman condition on the interface. Our approach yields non-Hilbertian normed spaces and a twofold saddle point structure for the corresponding operator equation. Furthermore, since the convective term in the Navier–Stokes equation forces the velocity to live in a smaller space than usual, we augment the variational formulation with suitable Galerkin type terms. The resulting augmented scheme is then written equivalently as a fixed point equation, so that the well-known Schauder and Banach theorems, combined with classical results on nonlinear monotone operators, are applied to prove the unique solvability of the continuous and discrete systems. In particular, given an integer k ≥ 0, Raviart–Thomas spaces of order k, continuous piecewise polynomials of degree ≤k + 1 and piecewise polynomials of degree ≤k are employed in the fluid for approximating the pseudostress tensor, velocity and vorticity, respectively, whereas Raviart–Thomas spaces of order k and piecewise polynomials of degree ≤k for the velocity and pressure, constitute a feasible choice in the porous medium. A priori error estimates and associated rates of convergence are derived, and several numerical examples illustrating the good performance of the method are reported