Research Outputs

Now showing 1 - 3 of 3
  • Publication
    A three-field Banach spaces-based mixed formulation for the unsteady Brinkman-Forchheimer equations
    (Computer Methods in Applied Mechanics and Engineering, 2022) ;
    Oyarzúa, Ricardo
    ;
    Villa-Fuentes, Segundo
    ;
    Yotov, Ivan
    We propose and analyze a new mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Besides the velocity, our approach introduces the velocity gradient and a pseudostress tensor as further unknowns. As a consequence, we obtain a three-field Banach spaces-based mixed variational formulation, where the aforementioned variables are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation, and derive the corresponding stability bounds, employing classical results on nonlinear monotone operators. We then propose a semidiscrete continuous-in-time approximation on simplicial grids based on the Raviart–Thomas elements of degree k ≥ 0 for the pseudostress tensor and discontinuous piecewise polynomials of degree k for the velocity and the velocity gradient. In addition, by means of the backward Euler time discretization, we introduce a fully discrete finite element scheme. We prove wellposedness and derive the stability bounds for both schemes, and under a quasi-uniformity assumption on the mesh, we establish the corresponding error estimates. We provide several numerical results verifying the theoretical rates of convergence and illustrating the performance and flexibility of the method for a range of domain configurations and model parameters.
  • Publication
    An augmented fully mixed formulation for the quasistatic Navier–Stokes–Biot model
    (Oxford University Press, 2024) ;
    Li, Tongtong
    ;
    Yotov, Ivan
    We introduce and analyze a partially augmented fully mixed formulation and a mixed finite element method for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier–Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of fluid force, conservation of momentum and the Beavers–Joseph–Saffman condition. We apply dual-mixed formulations in both domains, where the symmetry of the Navier–Stokes and poroelastic stress tensors is imposed in an ultra-weak and weak sense. In turn, since the transmission conditions are essential in the fully mixed formulation, they are imposed weakly by introducing the traces of the structure velocity and the poroelastic medium pressure on the interface as the associated Lagrange multipliers. Furthermore, since the fluid convective term requires the velocity to live in a smaller space than usual, we augment the variational formulation with suitable Galerkin-type terms. Existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with nonmatching grids, together with the corresponding stability bounds and error analysis with rates of convergence. Several numerical experiments are presented to verify the theoretical results and illustrate the performance of the method for applications to arterial flow and flow through a filter.
  • Publication
    A multipoint stress-flux mixed finite element method for the Stokes-Biot model
    (Numerische Mathematik, 2022) ;
    Tongtong Li
    ;
    Yotov, Ivan
    In this paper we present and analyze a fully-mixed formulation for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of stresses, and the Beavers-Joseph-Saffman law. We apply dual-mixed formulations in both domains, where the symmetry of the Stokes and poroelastic stress tensors is imposed by setting the vorticity and structure rotation tensors as auxiliary unknowns. In turn, since the transmission conditions become essential, they are imposed weakly by introducing the traces of the fluid velocity, structure velocity, and the poroelastic media pressure on the interface as the associated Lagrange multipliers. The existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with non-matching grids, together with the corresponding stability bounds. In addition, we develop a new multipoint stress-flux mixed finite element method by involving the vertex quadrature rule, which allows for local elimination of the stresses, rotations, and Darcy fluxes. Well-posedness and error analysis with corresponding rates of convergence for the fully-discrete scheme are complemented by several numerical experiments.