Options
Dr. Caucao-Paillán, Sergio
Nombre de publicación
Dr. Caucao-Paillán, Sergio
Nombre completo
Caucao Paillán, Sergio Andrés
Facultad
Email
scaucao@ucsc.cl
ORCID
4 results
Research Outputs
Now showing 1 - 4 of 4
- PublicationA fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations(Journal of Scientific Computing, 2020)
; ;Gatica, Gabriel ;Oyarzúa, RicardoSánchez, NestorWe propose and analyze a new mixed finite element method for the problem of steady double-diffusive convection in a fluid-saturated porous medium. More precisely, the model is described by the coupling of the Brinkman–Forchheimer and double-diffusion equations, in which the originally sought variables are the velocity and pressure of the fluid, and the temperature and concentration of a solute. Our approach is based on the introduction of the further unknowns given by the fluid pseudostress tensor, and the pseudoheat and pseudodiffusive vectors, thus yielding a fully-mixed formulation. Furthermore, since the nonlinear term in the Brinkman–Forchheimer equation requires the velocity to live in a smaller space than usual, we partially augment the variational formulation with suitable Galerkin type terms, which forces both the temperature and concentration scalar fields to live in \(\mathrm {L}^4\). As a consequence, the aforementioned pseudoheat and pseudodiffusive vectors live in a suitable \(\mathrm {H}(\mathrm {div})\)-type Banach space. The resulting augmented scheme is written equivalently as a fixed point equation, so that the well-known Schauder and Banach theorems, combined with the Lax–Milgram and Banach–Nečas–Babuška theorems, allow to prove the unique solvability of the continuous problem. As for the associated Galerkin scheme we utilize Raviart–Thomas spaces of order \(k\ge 0\) for approximating the pseudostress tensor, as well as the pseudoheat and pseudodiffusive vectors, whereas continuous piecewise polynomials of degree \(\le k + 1\) are employed for the velocity, and piecewise polynomials of degree \(\le k\) for the temperature and concentration fields. In turn, the existence and uniqueness of the discrete solution is established similarly to its continuous counterpart, applying in this case the Brouwer and Banach fixed-point theorems, respectively. Finally, we derive optimal a priori error estimates and provide several numerical results confirming the theoretical rates of convergence and illustrating the performance and flexibility of the method. - PublicationA fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman-Forchheimer and double-diffusion equations(ESAIM: Mathematical Modelling and Numerical Analysis, 2021)
; ;Gatica, GabrielOrtega, JuanWe propose and analyze a new mixed finite element method for the nonlinear problem given by the coupling of the steady Brinkman–Forchheimer and double-diffusion equations. Besides the velocity, temperature, and concentration, our approach introduces the velocity gradient, the pseudostress tensor, and a pair of vectors involving the temperature/concentration, its gradient and the velocity, as further unknowns. As a consequence, we obtain a fully mixed variational formulation presenting a Banach spaces framework in each set of equations. In this way, and differently from the techniques previously developed for this and related coupled problems, no augmentation procedure needs to be incorporated now into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that the well-known Banach theorem, combined with classical results on nonlinear monotone operators and Babuˇ ska–Brezzi’s theory in Banach spaces, are applied to prove the unique solvability of the continuous and discrete systems. Appropriate finite element subspaces satisfying the required discrete inf-sup conditions are specified, and optimal a priori error estimates are derived. Several numerical examples confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method. - PublicationA posteriori error analysis of a Banach spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous mediumIn this paper we consider a Banach spaces-based fully-mixed variational formulation that has been recently proposed for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations, and develop the first reliable and efficient residual-based a posteriori error estimator for the 2D and 3D versions of the associated mixed finite element scheme. For the reliability analysis, and due to the nonlinear nature of the problem, we employ the strong monotonicity of the operator involving the Forchheimer term, in addition to inf-sup conditions of some of the resulting bilinear forms, along with a stable Helmholtz decomposition in nonstandard Banach spaces, which, in turn, having been recently derived, constitutes another distinctive feature of the paper, and local approximation properties of the Raviart–Thomas and Clément interpolants. On the other hand, inverse inequalities, the localization technique through bubble functions, and known results from previous works, are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimator and illustrating the performance of the associated adaptive algorithms, are reported. In particular, the case of flow through a 2D porous media with an irregular channel networks is considered.
- PublicationA posteriori error analysis of a mixed finite element method for the coupled Brinkman-Forchheimer and double-diffusion equations(Journal of Scientific Computing, 2022)
; ;Gatica, Gabriel ;Oyarzúa, RicardoZúñiga, PauloIn this paper we consider a partially augmented fully-mixed variational formulation that has been recently proposed for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations, and develop an a posteriori error analysis for the 2D and 3D versions of the associated mixed finite element scheme. Indeed, we derive two reliable and efficient residual-based a posteriori error estimators for this problem on arbitrary (convex or non-convex) polygonal and polyhedral regions. The reliability of the proposed estimators draws mainly upon the uniform ellipticity and inf-sup condition of the forms involved, a suitable assumption on the data, stable Helmholtz decompositions in Hilbert and Banach frameworks, and the local approximation properties of the Clément and Raviart–Thomas operators. In turn, inverse inequalities, the localization technique based on bubble functions, and known results from previous works, are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimators and illustrating the performance of the associated adaptive algorithms, are reported. In particular, the case of flow through a 3D porous media with channel networks is considered.