Options
Mg. Martinez-Araneda, Claudia
Nombre de publicación
Mg. Martinez-Araneda, Claudia
Nombre completo
Martinez Araneda, Claudia Loreto
Facultad
Email
cmartinez@ucsc.cl
ORCID
13 results
Research Outputs
Now showing 1 - 10 of 13
- PublicationIs news really pessimistic? Sentiment Analysis of Chilean online newspaper headlines(Indian Society for Education and Environment, 2018)
; ;Segura, Alejandra ;Vidal-Castro, ChristianElgueta, JorgeObjectives: This paper explores the popular belief that all news is bad news. Many claim not to read newspapers to avoid knowing about the worst of our society. We want tear down the myth by applying a Sentiment Analysis (SA) approach. Method/Analysis: This work applies sentiment analysis techniques to study the headline bias of online newspapers for the period between March 2014 and April 2015. We analyzed 2953 headlines gathered from five of the most popular Chilean newspapers which are available online and offer RSS feeds. Findings: Our results show a roughly equivalent percentage of positive bias (38%) and negative bias (37%) instances, with 25% of headlines exhibiting a neutral bias. Automatic classification performance is promising, with decent classifier performance and sensitivity, with plenty of room for improvement. Novelty/Improvement: This work also a domain-specific Spanish language tagged corpus was generated as a result of this work, which is a valuable resource for future studies. - PublicationTeach me to play, gamer! Imitative learning in computer games via linguistic description of complex phenomena and decision trees(Soft Computing , Springer Link, 2023)
;Clemente Rubio-Manzano ;Lermanda, Tomás; Christian Vidal & Alejandra SeguraIn this article, we present a new machine learning model by imitation based on the linguistic description of complex phenomena. The idea consists of, first, capturing the behaviour of human players by creating a computational perception network based on the execution traces of the games and, second, representing it using fuzzy logic (linguistic variables and if-then rules). From this knowledge, a set of data (dataset) is automatically created to generate a learning model based on decision trees. This model will be used later to automatically control the movements of a bot. The result is an artificial agent that mimics the human player. We have implemented, tested and evaluated this technology from two different points of view: performance by using classical metrics (accuracy, ROC area and PRC area) and believability by using a Turing test for trained bots. The results obtained are interesting and promising, showing that this method can be a good alternative to design and implement the behaviour of intelligent agents in video game development. - PublicationA novel approach to the creation of a labelling lexicon for improving emotion analysis in text(Emerald Publishing, 2021)
;Segura Navarrete, Alejandra; ;Vidal Castro, ChristianRubio Manzano, ClementePurpose – This paper aims to describe the process used to create an emotion lexicon enriched with the emotional intensity of words and focuses on improving the emotion analysis process in texts. Design/methodology/approach – The process includes setting, preparation and labelling stages. In the first stage, a lexicon is selected. It must include a translation to the target language and labelling according to Plutchik’s eight emotions. The second stage starts with the validation of the translations. Then, it is expanded with the synonyms of the emotion synsets of each word. In the labelling stage, the similarity of words is calculated and displayed using WordNet similarity. Findings – The authors’ approach shows better performance to identification of the predominant emotion for the selected corpus. The most relevant is the improvement obtained in the results of the emotion analysis in a hybrid approach compared to the results obtained in a purist approach. Research limitations/implications – The proposed lexicon can still be enriched by incorporating elements such as emojis, idioms and colloquial expressions. Practical implications – This work is part of a research project that aids in solving problems in a digital society, such as detecting cyberbullying, abusive language and gender violence in texts or exercising parental control. Detection of depressive states in young people and children is added. Originality/value – This semi-automatic process can be applied to any language to generate an emotion lexicon. This resource will be available in a software tool that implements a crowdsourcing strategy allowing the intensity to be re-labelled and new words to be automatically incorporated into the lexicon. - PublicationPredicting engineering undergraduates dropout: A case study in Chile(TEMPUS Publications, 2023)
; ; Bizama-Varas, MichelleThe main objective of this article is to present and validate a statistical model (N = 3,152) to predict the dropout of students from the School of Engineering of the Universidad Católica de la Santísima Concepción (UCSC) in Chile. Student droupout in engineering is a generalized and multifactorial phenomenon, even more so when the student can use his or her university access score for a period of two years. In the UCSC, a distinction is made between formal and nonformal droupout. The information collection methodology in this study included the survey administered by the Department of Evaluation, Measurement and Educational Registry of Chile (DEMRE) and input from the Directorate of Admission and Academic Registration of the UCSC. Within the analysis groups were students who formally resigned and were analyzed according to the reasons they gave for leaving; the other group was constituted by students who did not formalize their abandonment, deserters. Subsequently, a logistic regression analysis was applied to determine which variables would best explain the phenomenon of droupout. Among the main factors are gender (GENDER), program (AU), cumulative average score (PPA_SCORE), mathematics score of the university selection test (PSU_MATH_SCORE), mother education level (EDU_MOM), progression rate of student in engineering program (PROGRESSION_RATE) and socioeconomic quintile of student (QUINTILE). The performance of the prediction model shows an accuracy (88.53%) and precision (88.69%), which is a very encouraging result in relation to the performance of the studies reviewed in the literature. - PublicationThe role of WordNet similarity in the affective analysis pipeline(Instituto Politécnico Nacional, 2019)
;Segura-Navarrete, Alejandra ;Vidal-Castro, Christian ;Rubio-Manzano, ClementeSentiment Analysis (SA) is a useful and important discipline in Computer Science, as it allows having a knowledge base about the opinions of people regarding a topic. This knowledge is used to improve decision-making processes. One approach to achieve this is based on the use of lexical knowledge structures. In particular, our aim is to enrich an affective lexicon by the analysis of the similarity relationship between words. The hypothesis of this work states that the similarities of the words belonging to an affective category, with respect to any other word, behave in a homogeneous way within each affective category. The experimental results show that words of a same affective category have a homogeneous similarity with an antonym, and that the similarities of these words with any of their antonyms have a low variability. The novelty of this paper is that it builds the bases of a mechanism that allows incorporating the intensity in an affective lexicon automatically. - PublicationWhat do our Children read about? Affect analysis of Chilean school texts(Bahri Publications, 2015)
; ;Fernández, Jorge ;Segura, Alejandra ;Vidal-Castro, ChristianRubio-Manzano, ClementeWe present a study of the affective character of 1st to 8th year Chilean school texts, to which we applied lexicon-based affect analysis techniques to identify 6 basic emotions (anger, sadness, fear, disgust, surprise and happiness). First, we generated a corpus of 525 documents, 18176 paragraphs and 137516 words. Then, using the affective words frequency, we built a classifier based on Emotion Word Density to detect emotions in the texts. Our results show that the predominant affective states are happiness (58%), sadness (16%) and fear (12%). The 6 basic emotions are present in most literary forms with uniform relative density except for songs, where anger is absent. Classifier performance was validated by comparing its results against the opinions of experts in the field, and its results show an above-average conformity (accuracy = 63%), above-average predictive capacity (precision = 69%) and good classifier sensitivity (recall = 80% and f-measure = 93%). - PublicationExplainable Hopfield Neural Networks using an automatic video-generation system(MDPI, 2021)
;Rubio Manzano, Clemente ;Segura Navarrete, Alejandra; Vidal Castro, ChristianHopfield Neural Networks (HNNs) are recurrent neural networks used to implement associative memory. They can be applied to pattern recognition, optimization, or image segmentation. However, sometimes it is not easy to provide the users with good explanations about the results obtained with them due to mainly the large number of changes in the state of neurons (and their weights) produced during a problem of machine learning. There are currently limited techniques to visualize, verbalize, or abstract HNNs. This paper outlines how we can construct automatic video-generation systems to explain its execution. This work constitutes a novel approach to obtain explainable artificial intelligence systems in general and HNNs in particular building on the theory of data-to-text systems and software visualization approaches. We present a complete methodology to build these kinds of systems. Software architecture is also designed, implemented, and tested. Technical details about the implementation are also detailed and explained. We apply our approach to creating a complete explainer video about the execution of HNNs on a small recognition problem. Finally, several aspects of the videos generated are evaluated (quality, content, motivation and design/presentation). - PublicationFuzzy linguistic descriptions for execution trace comprehension and their application in an introductory course in artificial intelligence(IOS Press, 2019)
;Rubio-Manzano, Clemente ;Lermanda-Senoceaín, Tomás; ;Vidal-Castro, ChristianSegura-Navarrete, AlejandraExecution traces comprehension is an important topic in computer science since it allows software engineers to get a better understanding of the system behavior. However, traces are usually very large and hence they are difficult to interpret. Parallel, execution traces comprehension is a very important topic into the algorithms learning courses since it allows students to get a better understanding of the algorithm behavior. Therefore, there is a need to investigate ways to help students (and teachers) find and understand important information conveyed in a trace despite the trace being massive. In this paper, we propose a new approximation for execution traces comprehension based on fuzzy linguistic descriptions. A new methodology and a data-driven architecture based on linguistic modelling of complex phenomenon are presented and explained. In particular, they are applied to automatically generate linguistic reports from execution traces generated during the execution of algorithm implemented by the students of an introductory course of artificial intelligence. To the best of our knowledge, it is the first time that linguistic modelling of complex phenomenon is applied to execution traces comprehension. Throughout the article, it is shown how this kind of technology can be employed as a useful computer-assisted assessment tool that provides students and teachers with technical, immediate and personalised feedback about the algorithms that are being studied and implemented. At the same time, they provide us with two useful applications: they are an indispensable pedagogical resource for improving comprehension of execution traces, and they play an important role in the process of measuring and evaluating the “believability” of the agents implemented. To show and explore the possibilities of this new technology, a web platform has been designed and implemented by one of the authors, and it has been incorporated into the process of assessment of an introductory artificial intelligence course. Finally, an empirical evaluation to confirm our hypothesis was performed and a survey directed to the students was carried out to measure the quality of the learning-teaching process by using this methodology enriched with fuzzy linguistic descriptions. - PublicationDetecting aggressiveness in tweets: A hybrid model for detecting cyberbullying in the Spanish language(MDPI, 2021)
; ;Lepe-Faúndez, Manuel ;Segura-Navarrete, Alejandra ;Vidal-Castro, ChristianRubio-Manzano, ClementeIn recent years, the use of social networks has increased exponentially, which has led to a significant increase in cyberbullying. Currently, in the field of Computer Science, research has been made on how to detect aggressiveness in texts, which is a prelude to detecting cyberbullying. In this field, the main work has been done for English language texts, mainly using Machine Learning (ML) approaches, Lexicon approaches to a lesser extent, and very few works using hybrid approaches. In these, Lexicons and Machine Learning algorithms are used, such as counting the number of bad words in a sentence using a Lexicon of bad words, which serves as an input feature for classification algorithms. This research aims at contributing towards detecting aggressiveness in Spanish language texts by creating different models that combine the Lexicons and ML approach. Twenty-two models that combine techniques and algorithms from both approaches are proposed, and for their application, certain hyperparameters are adjusted in the training datasets of the corpora, to obtain the best results in the test datasets. Three Spanish language corpora are used in the evaluation: Chilean, Mexican, and Chilean-Mexican corpora. The results indicate that hybrid models obtain the best results in the 3 corpora, over implemented models that do not use Lexicons. This shows that by mixing approaches, aggressiveness detection improves. Finally, a web application is developed that gives applicability to each model by classifying tweets, allowing evaluating the performance of models with external corpus and receiving feedback on the prediction of each one for future research. In addition, an API is available that can be integrated into technological tools for parental control, online plugins for writing analysis in social networks, and educational tools, among others. - PublicationHow useful TutorBot+ is for teaching and learning in programming courses: A preliminary study(IEEE, 2023)
; ; ;Gómez-Meneses, Pedro ;Maldonado-Montiel, Diego ;Segura-Navarrete, AlejandraVidal-Castro, ChristianObjective: The objective of this paper is to present preliminary work on the development of an EduChatBot tool and the measurement of the effects of its use aimed at providing effective feedback to programming course students. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT3.5 and is tasked with assisting and providing timely positive feedback to students in computer science programming courses at UCSC. Methods/Analysis: The proposed method consists of four stages: (1) Immersion in the feedback and Large Language Models (LLMs) topic; (2) Development of tutorBot+ prototypes in both non-conversational and conversational versions; (3) Experiment design; and (4) Intervention and evaluation. The first stage involves a literature review on feedback and learning, the use of intelligent tutors in the educational context, as well as the topics of LLMs and chatGPT. The second and third stages detail the development of tutorBot+ in its two versions, and the final stage lays the foundation for a quasi-experimental study involving students in the curriculum activities of Programming Workshop and Database Workshop, focusing on learning outcomes related to the development of computational thinking skills, and facilitating the use and measurement of the tool’s effects. Findings: The preliminary results of this work are promising, as two functional prototypes of tutorBot+ have been developed for both the non-conversational and conversational versions. Additionally, there is ongoing exploration into the possibility of creating a domain-specific model based on pretrained models for programming, integrating tutorBot+ with other platforms, and designing an experiment to measure student performance, motivation, and the tool’s effectiveness.