Options
Dr. Caamaño-Avendaño, Diego
Nombre de publicación
Dr. Caamaño-Avendaño, Diego
Nombre completo
Caamaño Avendaño, Diego Patricio
Facultad
Email
dcaamano@ucsc.cl
ORCID
14 results
Research Outputs
Now showing 1 - 10 of 14
- PublicationThe influence of pool-riffle morphological features on river mixing(MDPI, 2020)
;Fuentes Aguilera, Patricio; ;Alcayaga, HernánTranmer, AndrewAccurate prediction of pollutant concentrations in a river course is of great importance in environmental management. Mathematical dispersion models are often used to predict the spatial distribution of substances to help achieve these objectives. In practice, these models use a dispersion coefficient as a calibration parameter that is calculated through either expensive field tracer experiments or through empirical equations available in the scientific literature. The latter are based on reach-averaged values obtained from laboratory flumes or simple river reaches, which often show great variability when applied to natural streams. These equations cannot directly account for mixing that relates specifically to spatial fluctuations of channel geometry and complex bed morphology. This study isolated the influence of mixing related to bed morphology and presented a means of calculating a predictive longitudinal mixing equation that directly accounted for pool-riffle sequences. As an example, a predictive equation was developed by means of a three-dimensional numerical model based on synthetically generated pool-riffle bathymetries. The predictive equation was validated with numerical experiments and field tracer studies. The resulting equation was shown to more accurately represent mixing across complex morphology than those relations selected from the literature. - PublicationEffects on fluvial geomorphology and vegetation cover following hydroelectric power plant operation: A case study in the Maule river (Chile)The installation of hydroelectric plants has generated multiple environmental impacts on the world’s river systems. In central Chile, the impacts of hydroelectric reservoir operation have been documented in ecological and hydrologic regime terms. This investigation assesses the changes in channel morphology, vegetation distribution, and flows in the middle section of the Maule River during the period following the start-up of a hydroelectric plant. Changes in fluvial morphology (active area) and land cover are quantified using LANDSAT images, contrasted with a vegetation sampling and flow analysis. The results show a 12% decrease in active areas of the river, indicating a loss of geomorphological diversity. Within the active channel, there was a gradual increase in plant-covered surface area, which reached 159% between 1989 and 2018, mainly due to reductions in water (−61%), active bar (−35%), and bare soil surface areas (−29%). The changes were evident ten years after plant operations began and intensified during the period known as the megadrought in central Chile (2008–2018). The flow magnitudes present a decrease for exceedance probabilities (P) below 85% in the period after 1985, with a slight increase recorded for low flows (P > 85%). In the segments with superior stabilization, invasive species such as Acacia dealbata (silver wattle) predominated, which are specialists at taking advantage of disturbances to settle and stabilize active areas, narrowing the possibilities for morphological change.
- PublicationInfluence of dam breach parameter statistical definition on resulting rupture maximum dischargeHowever rare, dam breach occurrences are recently reported and associated with significant damage to life and property. The rupture of the structural dam wall generates severe flow rates that exceed spillway capacity consequently generating unprecedented flooding scenarios. The present research aims to assess the influence of the dam breach statistical configuration on the most relevant parameters to predict the rupture maximum discharge (RMD). McBreach© software was used to provide the necessary inputs for the operation of the HEC-RAS dam breach module. McBreach© automates the process of batch mode simulations providing a Monte Carlo approach to characterize the breach parameters stochastically. Thus, a sensitivity analysis was performed to identify the most influential breach parameters, followed by an uncertainty assessment regarding their statistical definition of the resultant RMD. Analysis showed that the overtopping failure mode discharges are most sensitive to the breach formation time (tf) parameter, followed by the final height breach (Inv) and the final width of the breach (B), which combined are responsible for 85% of the rupture’s maximum discharge. Further results indicated highly variable RMD magnitudes (up to 300%) depending on the breach parameter’s statistical definition (i.e., probability density function and associated statistical parameters). The latter significantly impacts the estimated flood risk associated with the breach, the flood zone delimitation, preparation of emergency action plans (EAP) and scaling of future dam projects. Consequently, there is a plausible need for additional investigations to reduce this uncertainty and, therefore, the risk associated with it.
- PublicationRemote sensing with UAVs for modeling floods: An exploratory approach based on three Chilean rivers(Water, 2023)
;Clasing, Robert; ;Arumí,José; ;Alcayaga, HernánMedina, YelenaThe use of unmanned aerial vehicles (UAVs) has been steadily increasing due to their ability to acquire high-precision ground elevation information at a low cost. However, these devices have limitations in estimating elevations of the water surface and submerged terrain (i.e., channel bathymetry). Therefore, the creation of a digital terrain model (DTM) using UAVs in low-water periods means a greater dry channel surface area and thus reduces the lack of information on the wet area not appropriately measured by the UAV. Under such scenarios, UAV-DTM-derived data present an opportunity for practical engineering in estimating floods; however, the accuracy of estimations against current methods of flood estimations and design needs to be measured. The objective of this study is therefore to develop an exploratory analysis for the creation of hydraulic models of river floods using only UAV-derived topographic information. Hydraulic models were constructed based on DTMs created in (i) the traditional manner, considering the bathymetry measured with RTK-GPS and topography, and via (ii) remote sensing, which involves topography measurement with a UAV and assumes a flat bed in the part of the channel covered by water. The 1D steady-state HEC-RAS model v.5.0.3 was used to simulate floods at different return periods. The applied methodology allows a slightly conservative, efficient, economical, and safe approach for the estimation of floods in rivers, with an RMSE of 6.1, 11.8 and 12.6 cm for the Nicodahue, Bellavista and Curanilahue rivers. The approach has important implications for flood studies, as larger areas can be surveyed, and cost-and time-efficient flood estimations can be performed using affordable UAVs. Further research on this topic is necessary to estimate the limitations and precision in rivers with different morphologies and under different geographical contexts. - PublicationDetecting and quantifying hydromorphology changes in a chilean river after 50 years of dam operation(Journal of South American Earth Sciences, 2019)
;Alcayaga, Hernán ;Palma, Sebastian; ;Mao, LucaSoto Alvarez, MarcoThis study identifies and characterizes hydromorphological changes along the Rapel River downstream of the first large dam built in Chile (1968). A hydromorphological analysis is carried out to assess changes on the hydrological flow regime, bed sediments, and fluvial morphology along a 19 km river reach. Results classify current global hydrological quality as “Moderate” (according to the Indicator for Hydrological Alteration in RIverS, IAHRIS), however specific indicators within this classification scheme identified quality as “Poor”. The morphological quality decreased from “Very Good” to “Good” (assessed by the Morphological Quality Index, MQI). Changes in the planform were particularly intense during the post dam period when intensive lateral mobility occurred, with the corresponding loss of secondary river branches, and with generation of straighter and regular river sections with presence of an armor layer observed along the entire river reach. Between 1991 and 2015 channel stabilization with less lateral mobility was observed, which thought to be associated with the river new equilibrium trend. River width, sinuosity and braiding index changed at different rates along the studied river reach. Our investigation demonstrates that the Rapel River experienced changes differently than those described in the literature given its lower gradient and hydraulic interaction with the Pacific Ocean. - PublicationAnalysis of the cascading rainfall-landslide-tsunami event of June 29th, 2022, Todos los Santos Lake, Chile(Landslides, 2023)
; ; ;Espinoz, Mauricio ;Gómez, Matías ;Maldonado, Felipe ;Sepúlveda, Violchen ;Rogel, Iván ;Oyarzun, Juan CarlosDuhart, PaulA cascading rainfall–landslide–tsunami event occurred on June 29th, 2022, in Todos los Santos Lake, located in southern Chile, affecting the tourist town of Petrohué. The event took place after several days of heavy rain during an extratropical cyclone. Important data were collected during a field survey, including hillslope 3D scans, lake–river bathymetry, orthomosaic photos, and an assessment of damage to public infrastructure. The analysis showed that the landslide had an estimated length, width, and depth of 175 m, 40 m, and 1.5 m, respectively, which resulted in a total volume of 10,500 m3. The underwater runout distance of the landslide was estimated at 40 m, with a final water depth of 12 m. The initial tsunami wave was observed to be ~1 m, and since the distance from the landslide to the town was ~500 m, an arrival time of ~1 min was observed. Despite the small tsunami amplitudes, the pedestrian bridge of the floating pontoon collapsed due to the flow current and vertical oscillations. The results of the numerical simulation of the tsunami supported the observed data. They showed that the impact of the tsunami was only in the near field and was influenced by the bathymetry, such that refraction and edge waves were observed. The landslide occurred in an area where previous debris flows took place in 2013 and 2015. The main finding of the present research is that the occurrences of this and previous landslides were controlled by the presence of the Liquiñe–Ofqui fault zone, which generates broad areas of structural damage, with mechanical and chemical weathering significantly reducing rock strength. These observations provide a warning regarding the susceptibility of similar regions to other trigger events such as earthquakes and rainfall. This recent landslide highlights the need for a more comprehensive hazard assessment, for which probabilistic analysis could be focused on large active strike-slip fault systems. It also highlights the importance of community awareness, particularly in areas where tourism and real estate speculation have significantly increased urban development. - PublicationAssessment of alluvial trends toward dynamic equilibrium under chronic climatic forcingA remote proglacial stream in Chilean Patagonia was examined at two temporal scales to evaluate the downstream spatial progression of morphodynamics in response to chronic climatic forcing. Historic aerial imagery indicates alluvial channel response to a reduction in glacigenic sediment delivery that is driving reach-scale alterations to the channel planform and affecting the extent and character of geomorphic reaches at centurial timescales. At the decadal timescale, fluvial morphodynamics show a downstream spatial convergence toward dynamic equilibrium. The attainment of dynamic equilibrium is not considered herein, but the trend toward such a condition is discussed. Metrics of flood magnitude, hydraulic energy thresholds, inter-annual energy expenditure, variability of channel dimensions, and continuity of sediment transport capacity illustrate how alluvial systems respond to chronic climatic forcing and deglaciation subject to the constraints of valley conditions. A conceptual proglacial alluvial model is proposed in order to characterize expected fluvial changes and to evaluate the downstream spatial progression. This model is based on a combination of previous observations of alluvial evolution and a location-for-time-substitution approach validated by an intensive 3 year field data collection program.
- PublicationIdentifying dynamic equilibrium of an undeveloped alluvial stream by extremal hypothesesThe indeterminate channel problem arises from uncertainty in finding a closure relation for alluvial channels created by self-organizing erosional and depositional processes. Extremal hypotheses have been proposed as one potential approach to closing the system of governing equations for alluvial channels. Many different extremal hypotheses have been presented, but no substantive evidence has been developed to select which hypothesis may be most appropriate for natural alluvial river systems. This paper evaluates the ability of ten extremal hypotheses to identify dynamic equilibrium across a geomorphic gradient in the remote and undeveloped mid-latitude watershed of Rio Murta, Chile. This study (a) introduces extremal hypotheses, (b) describes the field site and geomorphic conditions, and (c) examines which extremal hypotheses are supported by the field data in identifying the evolutionary trend toward dynamic-equilibrium. The extremal hypotheses that identified dynamic equilibrium within the geomorphic gradient in the field are: (1) minimum kinetic energy, (2) minimum specific stream power, (3) maximum friction factor, and (4) maximum total friction factor, which collectively support minimizing kinetic energy of the system.
- PublicationEvaluation of products 3B42 v7 and 3IMERG for the hydroclimatic regions of Chile(Elsevier, 2020)
; ;Soto-Alvarez, Marco ;Alcayaga, Hernán ;Alarcon, Vladimir ;Palma, SebastiánEscanilla, RossanaData provided by products 3B42 V7 (TRMM) and its successor 3IMERG (GPM) are compared with discrete rainfall information throughout the Chilean territory covering four macro hydroclimatic zones. Precipitation data was obtained from weather stations available on a daily basis from the 1930s to present. A total of 143 stations were chosen and rainfall estimates performed for years 2014 through 2018. Applying the same metrics we showed how GPM performances improve as the temporal aggregation increases. Several drawbacks were detected in the coastal areas, which were characterized by lower accuracy performances than internal areas. However, the 3IMERG product could be a strong source of data to study the impact that climatic disturbances have on the hydrologic cycle in the Central and South zones of Chile. Additionally, its offers a fundamental source of data for remote zones or areas where access is complicated to install weather stations. - PublicationUrban stream syndrome: Quantifying topographic variation along an urban-rural gradientTopographic variation within fluvial systems is essential for providing a mosaic of physical habitats and supporting the dynamic hydraulic, geochemical, and biological processes that determine both aquatic and riparian ecosystem function. In highly-modified rivers through both urban and rural settings, the physical heterogeneity of alluvial channels has been diminished by anthropogenic activities. As riparian areas are increasingly under pressure from agricultural and urban development, identifying the geomorphic controls on physical heterogeneity through these environments is critical. In this study, we use the bed coefficient of variation (CV) extracted from a high-resolution bathymetric LiDAR survey as a dimensionless metric for topographic variation and physical heterogeneity over 100 km of the Boise River corridor that spans an urban-rural gradient. Our CV results for both the streambed and channel demonstrate that the average topographic variation of reaches in urban areas is 22–25% lower than reaches located in rural areas along the same river. While these results initially support the application of the urban stream syndrome hypothesis, CV values had similar magnitudes in both urban and rural reaches suggesting there is a dominant control on topographic variation that was not directly related to urban land use. Analysis of CV values relative to normalized levee width indicates that the causative driver of morphologic simplification in the channel was lateral constraints from levees. In the Boise River, topographic variation increased linearly with normalized levee widths that ranged between 50% and >300% of the average channel width. Further, topographic variation was maximized in reaches where flow expansion during high discharge inundated between 1 and 2 times the average channel width (approximately 65–70% of the available floodplain). Our simple and objective watershed-scale approach leverages highresolution topography data to identify reaches of high physical heterogeneity for river conservation, as well as help guide environmental flow releases in managed rivers.