Options
Dr. Aránguiz-Muñoz, Rafael
Nombre de publicación
Dr. Aránguiz-Muñoz, Rafael
Nombre completo
Aránguiz Muñoz, Rafael Enrique
Facultad
Email
raranguiz@ucsc.cl
ORCID
6 results
Research Outputs
Now showing 1 - 6 of 6
- PublicationComparative analysis of tsunami recovery strategies in small communities in Japan and Chile(Geosciences (Switzerland), 2019)
;Bruno Valenzuela, Ven Paolo ;Maduranga Samarasekara, Ratnayakage Sameera ;Kularathna, Shyam ;Cubelos Pérez, G. Carlota ;Norikazu, Furukawa ;Nathan Crichton, Richard ;Quiroz, Marco ;Yavar, Ramon ;Izumi, Ikeda; ;Motoharu, OnukiEsteban, MiguelThe Sendai Framework for Disaster Risk Reduction emphasizes the need to rebuild better after a disaster to ensure that the at-risk communities can withstand a similar or stronger shock in the future. In the present work, the authors analyzed the reconstruction paths through a comparative analysis of the perspective of a community in Japan and another in Chile, and their respective local governments. While both countries are at risk to tsunamis, they follow different reconstruction philosophies. Data was gathered through key informant interviews of community members and local government officials, by adapting and modifying the Building Resilience to Adapt to Climate Extremes and Disasters (BRACED) 3As framework to a tsunami scenario. The 3As represent anticipatory, adaptive, and absorptive capacities as well as transformative capacities and respondents were asked to rate this according to their perspectives. It was found that while both communities perceive that much is to be done in recovery, Kirikiri has a more holistic and similar perspective of the recovery with their government officials as compared to Dichato. This shows that community reconstruction and recovery from a disaster requires a holistic participation and understanding. - PublicationUnderstanding community-level flooding awareness in remote coastal towns in Northern Chile through community mapping(MDPI, 2019)
; ;Cubelos, Carlota ;Kularathna, A. ;Valenzuela, Ven ;Iliopoulos, Nikolaos ;Quiroz, Marco ;Yavar, Ramon ;Henriquez, Pedro ;Bacigalupe, Gonzalo ;Onuki, Motoharu ;Mikami, Takahito ;Cienfuegos, RodrigoEsteban, MiguelIn 2015 and 2017 unusual ocean and atmospheric conditions produced many years’ worth of rainfall in short periods over Northern Chile’s Atacama Desert, resulting in catastrophic flooding in the town of Chañaral. However, the town is not only at risk of fluvial flooding, it is also at risk of tsunamis. Through a community mapping exercise, the authors attempted to establish the level of community awareness about tsunamis, and contrasted it with that of other types of water-related hazards facing the town (namely that of flooding due to high intensity rain). This was then compared with the results of field surveys and tsunami hazard simulations, indicating than overall the community appears to have better awareness than authorities about the threat posed by these types of events. The authors thus concluded that in cases when the community has a high level of hazard awareness (which in the case of Chile was the result of traditional knowledge being transmitted from previous generations) it would be advantageous to include them in discussions on how to improve disaster resilience. - PublicationDevelopment and application of a tsunami fragility curve of the 2015 tsunami in Coquimbo, ChileThe last earthquake that affected the city of Coquimbo took place in September 2015 and had a magnitude of Mw=8.3, resulting in localized damage in low-lying areas of the city. In addition, another seismic gap north of the 2015 earthquake rupture area has been identified; therefore, a significant earthquake (Mw=8.2 to 8.5) and tsunami could occur in the near future. The present paper develops a tsunami fragility curve for the city of Coquimbo based on field survey data and tsunami numerical simulations. The inundation depth of the 2015 Chile tsunami in Coquimbo was estimated by means of numerical simulation with the Non-hydrostatic Evolution of Ocean WAVEs (NEOWAVE) model and five nested grids with a maximum grid resolution of 10 m. The fragility curve exhibited behavior similar to that of other curves in flat areas in Japan, where little damage was observed at relatively high inundation depths. In addition, it was observed that Coquimbo experienced less damage than Dichato (Chile); in fact, at an inundation depth of 2 m, Dichato had a ∼75 % probability of damage, while Coquimbo proved to have only a 20 % probability. The new fragility curve was used to estimate the damage by possible future tsunamis in the area. The damage assessment showed that ∼50 % of the structures in the low-lying area of Coquimbo have a high probability of damage in the case of a tsunami generated off the coast of the study area if the city is rebuilt with the same types of structures.
- PublicationRisk factors and perceived restoration in a town destroyed by the 2010 Chile tsunami(Copernicus Publications, 2017)
; ;Martínez, Carolina ;Rojas, Octavio ;Villagra, PaulaSáez-Carrillo, KatiaA large earthquake and tsunami took place in February 2010, affecting a significant part of the Chilean coast (Maule earthquake, Mw of 8.8). Dichato (37° S), a small town located on Coliumo Bay, was one of the most devastated coastal areas and is currently under reconstruction. Therefore, the objective of this research is to analyze the risk factors that explain the disaster in 2010, as well as perceived restoration 6 years after the event. Numerical modeling of the 2010 Chile tsunami with four nested grids was applied to estimate the hazard. Physical, socioeconomic and educational dimensions of vulnerability were analyzed for pre- and post-disaster conditions. A perceived restoration study was performed to assess the effects of reconstruction on the community. It was focused on exploring the capacity of newly reconstructed neighborhoods to provide restorative experiences in case of disaster. The study was undertaken using the perceived restorativeness scale. The vulnerability variables that best explained the extent of the disaster were housing conditions, low household incomes and limited knowledge about tsunami events, which conditioned inadequate reactions to the emergency. These variables still constitute the same risks as a result of the reconstruction process, establishing that the occurrence of a similar event would result in a similar degree of devastation. For post-earthquake conditions, it was determined that all neighborhoods have the potential to be restorative environments soon after a tsunami. However, some neighborhoods are still located in areas devastated by the 2010 tsunami and again present high vulnerability to future tsunamis. - PublicationRiesgo de tsunami y planificación resiliente de la costa chilena: La localidad de Boca Sur, San Pedro de la Paz (37° S)Se evalúa el riesgo de inundación por tsunami en la localidad de Boca Sur, comuna de San Pedro de La Paz (37ºS), Región del Biobío. Se consideró un escenario extremo de tsunami generado por un sismo de magnitud Mw= 9.0. La inundación por tsunami se obtuvo mediante modelación numérica usando el código NEOWAVE con 4 mallas anidadas de diferente resolución espacial y topo-batimetría de detalle. El análisis de vulnerabilidad consideró las dimensiones física, socioeconómica y organizacional, con datos obtenidos a través del Instituto Nacional de Estadística a nivel de manzana censal y encuestas a la población. Se determinó que el primer tren de ondas llega a la costa luego de 22 minutos de ocurrido el terremoto, alcanzando la cota de 5 msnm y alturas de fl ujo de hasta 2 m. Los factores de vulnerabilidad que explican el riesgo se asociaron a una alta precariedad de la vivienda, bajo nivel de bienestar social, alta densidad poblacional y bajo nivel de organización comunitaria de la población en caso de evacuación frente a tsunamis.
- PublicationFlood defence alternatives for the lower Bío Bío River, Chile(Universidad Católica de la Santísima Concepción, 2013)
;van Heemst, Constant ;Willems, Joost ;Weller, Anthonie ;van Verseveld, Huub; The Bío Bío River is the second largest river in Chile considering both discharge and length. The Bío Bío River flows through the second most important economical centre in Chile and it has been recently classified as one of the world's largest river systems strongly affected by fragmentation and change in flow regime, mainly due to hydropower and irrigation. The cities of Hualqui, Chiguayante, Concepción, Hualpén, and San Pedro de la Paz are located along the last 25 km of its course, and are exposed to a high flood risk due to a combination of increasing rainfall storms and the dams operation located in the upper basin. This work assessed several structural and non-structural flood defence alternatives for the lower 25 km of the river. A one-dimensional (1D) hydraulic model was used under different discharge scenarios. The results showed that storage areas and diversion canals located along the lower part of the Bío Bío River did not prove to be a suitable solution. Nevertheless, it was found that the most effective alternative implies a reservoir operation focused on storing the extra water produced by the incoming flood. Conclusions support the materialization of reservoir emergency operation protocols, as indicated in the Reglamento de Ley N°20.304, approved by Decreto de Ley 138, Chile.