Options
Dr. Poza-Díaz, Abner
Research Outputs
Multiscale Hybrid-Mixed Methods for the Stokes and Brinkman Equations—A Priori Analysis
2025, Araya, Rodolfo, Harder, Christopher, Dr. Poza-Díaz, Abner, Valentin, Frédéric
The multiscale hybrid-mixed (MHM) method for the Stokes operator was formally introduced in [R. Araya et al., Comput. Methods Appl. Mech. Engrg., 324, pp. 29–53, 2017] and numerically validated. The method has face degrees of freedom associated with multiscale basis functions computed from local Neumann problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM version approximates the multiscale basis using a stabilized finite element method. This work proposes the first numerical analysis for the one- and two-level MHM method applied to the Stokes/Brinkman equations within a new abstract framework relating MHM methods to discrete primal hybrid formulations. As a result, we generalize the two-level MHM method to include general second-level solvers and continuous polynomial interpolation on faces and establish abstract conditions to have those methods well-posed and optimally convergent on natural norms. We apply the abstract setting to analyze the MHM methods using stabilized and stable finite element methods as second-level solvers with (dis)continuous interpolation on faces. Also, we find that the discrete velocity and pressure variables preserve the balance of forces and conservation of mass at the element level. Numerical benchmarks assess theoretical results.
Multiscale hybrid-mixed method for the Stokes and Brinkman equations—The method
2017, Dr. Poza-Díaz, Abner, Araya, Rodolfo, Harder, Christopher, Valentin, Frédéric
The multiscale hybrid-mixed (MHM) method is extended to the Stokes and Brinkman equations with highly heterogeneous coefficients. The approach is constructive. We first propose an equivalent dual-hybrid formulation of the original problem using a coarse partition of the heterogeneous domain. Faces may be not aligned with jumps in the data. Then, the exact velocity and the pressure are characterized as the solution of a global face problem and the solutions of local independent Stokes (or Brinkman) problems at the continuous level. Owing to this decomposition, the one-level MHM method stems from the standard Galerkin approach for the Lagrange multiplier space. Basis functions are responsible for upscaling the unresolved scales of the medium into the global formulation. They are the exact solution of the local problems with prescribed Neumann boundary conditions on faces driven by the Lagrange multipliers. We make the MHM method effective by adopting the unusual stabilized finite element method to solve the local problems approximately. As such, equal-order interpolation turns out to be an option for the velocity, the pressure and the Lagrange multipliers. The numerical solutions share the important properties of the continuum, such as local equilibrium with respect to external forces and local mass conservation. Several academic and highly heterogeneous tests infer that the method achieves super-convergence for the velocity as well optimal convergence for the pressure and also for the stress tensor in their natural norms.