Research Outputs

Now showing 1 - 2 of 2
Thumbnail Image
Publication

Nanoarchitectured composite of polysulfone and carbon-based fillers bearing magnetically stimulable function for efficient CO2 capture

2024, Dr. Nisar, Muhammad, Moreira-Dos Santos, Leonardo, Geshev, Julian, Qadir, Muhammad, Khan, Sherdil, Fechine, Guilhermino, Machado, Giovanna, Einloft, Sandra

Mitigating the global warming caused by CO2 emissions from anthropogenic sources is a hot research topic in the current era. The high cost and difficulty in handling liquid solvent absorbents for CO2 capture are the main barriers to their industrial application. Earth-abundant solid sorbents are favorable candidates for CO2 separation, offering a low energy penalty for CO2 desorption. Here, Polysulfone (PSF) nanocomposites were prepared by simple solution blending. The carbon-based fillers, namely carbon nanotubes (CNT), and activated carbon (CA) in the range of 5–20 wt%, containing iron nanoparticles, were used as fillers. Their morphological, thermal, CO2 capture capacity and magnetic properties were comprehensively studied. Transmission electron microscopy (TEM) evidenced uniform filler distribution in the polymer matrix with sizes of 47–54 nm. Thermal analysis revealed an approximately 4 ◦C improvement in both the initial (Tonset) and maximum (Tmax) degradation temperatures by adding 5 wt% of nanoparticles compared to the pristine polymer. The glass transition temperature (Tg) of the pristine PSF and produced nanocomposites showed identical values as estimated by differential scanning calorimetry (DSC). The increase in filler amount gradually decreased the water contact angle values, indicating a hydrophilic classification of the PSF nanocomposites. The obtained PSF nanocomposites exhibited an efficient CO2 capture capacity of about 40–61 mgCO2/g at 45 ◦C, higher than pristine PSF. This remarkable achievement sets a new benchmark compared to previously developed systems. The introduction of the filler transforms the diamagnetic polymer matrix into a ferromagnet, presenting a coercivity of about 480 Oe, enhancing the material’s potential for applications in microelectronics.

Thumbnail Image
Publication

Magnetically stimulable graphene Oxide/Polypropylene nanocomposites

2023, Nisar, Muhammad, Barrera-Galland, Griselda, Geshev, Julian, Bergmann,Carlos, Quijada, Rau?l

Core–shell magnetic air-stable nanoparticles have attracted increasing interest in recent years. Attaining a satisfactory distribution of magnetic nanoparticles (MNPs) in polymeric matrices is difficult due to magnetically induced aggregation, and supporting the MNPs on a nonmagnetic core–shell is a well-established strategy. In order to obtain magnetically active polypropylene (PP) nanocomposites by melt mixing, the thermal reduction of graphene oxides (TrGO) at two different temperatures (600 and 1000 °C) was carried out, and, subsequently, metallic nanoparticles (Co or Ni) were dispersed on them. The XRD patterns of the nanoparticles show the characteristic peaks of the graphene, Co, and Ni nanoparticles, where the estimated sizes of Ni and Co were 3.59 and 4.25 nm, respectively. The Raman spectroscopy presents typical D and G bands of graphene materials as well as the corresponding peaks of Ni and Co nanoparticles. Elemental and surface area studies show that the carbon content and surface area increase with thermal reduction, as expected, following a reduction in the surface area by the support of MNPs. Atomic absorption spectroscopy demonstrates about 9–12 wt % metallic nanoparticles supported on the TrGO surface, showing that the reduction of GO at two different temperatures has no significant effect on the support of metallic nanoparticles. Fourier transform infrared (FT-IR) spectroscopy shows that the addition of a filler does not alter the chemical structure of the polymer. Scanning electron microscopy of the fracture interface of the samples demonstrates consistent dispersion of the filler in the polymer. The TGA analysis shows that, with the incorporation of the filler, the initial (Tonset) and maximum (Tmax) degradation temperatures of the PP nanocomposites increase up to 34 and 19 °C, respectively. The DSC results present an improvement in the crystallization temperature and percent crystallinity. The filler addition slightly enhances the elastic modulus of the nanocomposites. The results of the water contact angle confirm that the prepared nanocomposites are hydrophilic. Importantly, the diamagnetic matrix is transformed into a ferromagnetic one with the addition of the magnetic filler.