Research Outputs

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    Observations on BI from N = 2 supergravity and the general Ward identity
    (Springer Nature, 2015) ;
    Andrianopoli, Laura
    ;
    Concha, Patrick
    ;
    D’Auria, Riccardo
    ;
    Trigiante, Mario
    The multi-vector generalization of a rigid, partially-broken N = 2 supersymmetric theory is presented as a rigid limit of a suitable gauged N = 2 supergravity with electric, magnetic charges and antisymmetric tensor fields. This on the one hand generalizes a known result by Ferrara, Girardello and Porrati while on the other hand allows to recover the multi-vector BI models of [4] from N = 2 supergravity as the end-point of a hierarchical limit in which the Planck mass first and then the supersymmetry breaking scale are sent to infinity. We define, in the parent supergravity model, a new symplectic frame in which, in the rigid limit, manifest symplectic invariance is preserved and the electric and magnetic Fayet-Iliopoulos terms are fully originated from the dyonic components of the embedding tensor. The supergravity origin of several features of the resulting rigid supersymmetric theory are then elucidated, such as the presence of a traceless SU(2)- Lie algebra term in the Ward identity and the existence of a central charge in the supersymmetry algebra which manifests itself as a harmless gauge transformation on the gauge vectors of the rigid theory; we show that this effect can be interpreted as a kind of “superspace non-locality” which does not affect the rigid theory on space-time. To set the stage of our analysis we take the opportunity in this paper to provide and prove the relevant identities of the most general dyonic gauging of Special-Kaehler and Quaternionic-Kaehler isometries in a generic N = 2 model, which include the supersymmetry Ward identity, in a fully symplectic-covariant formalism.
  • Thumbnail Image
    Publication
    N = 1 supergravity and Maxwell superalgebras
    (Springer Nature, 2014) ;
    Concha, P.
    We present the construction of the D = 4 supergravity action from the minimal Maxwell superalgebra sM4, which can be derived from the osp (4|1) superalgebra by applying the abelian semigroup expansion procedure. We show that N = 1, D = 4 pure supergravity can be obtained alternatively as the MacDowell-Mansouri like action built from the curvatures of the Maxwell superalgebra sM4. We extend this result to all minimal Maxwell superalgebras type sMm+2. The invariance under supersymmetry transformations is also analized.
  • Thumbnail Image
    Publication
    On the supersymmetry invariance of flat supergravity with boundary
    (Springer Nature, 2019) ;
    Concha, Patrick
    ;
    Ravera, Lucrezia
    The supersymmetry invariance of flat supergravity (i.e., supergravity in the absence of any internal scale in the Lagrangian) in four dimensions on a manifold with non-trivial boundary is explored. Using a geometric approach we find that the supersymmetry invariance of the Lagrangian requires to add appropriate boundary terms. This is achieved by considering additional gauge fields to the boundary without modifying the bulk Lagrangian. We also construct an enlarged supergravity model from which, in the vanishing cosmological constant limit, flat supergravity with a non-trivial boundary emerges properly.
  • Thumbnail Image
    Publication
    Generalized supersymmetric cosmological term in N=1 supergravity
    (Springer Nature, 2015) ;
    Concha, P.
    ;
    Salgado, P.
    An alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N = 1, D = 4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.
  • Thumbnail Image
    Publication
    On the supersymmetric extension of Gauss-Bonnet like gravity
    (Springer Nature, 2016) ;
    Concha, P.
    ;
    Ipinza, M.
    ;
    Raverad, L.
    We explore the supersymmetry invariance of a supergravity theory in the presence of a non-trivial boundary. The explicit construction of a bulk Lagrangian based on an enlarged superalgebra, known as AdS-Lorentz, is presented. Using a geometric approach we show that the supersymmetric extension of a Gauss-Bonnet like gravity is required in order to restore the supersymmetry invariance of the theory.