Options
Dr. Villagran-Orellana, Marcelo
Nombre de publicación
Dr. Villagran-Orellana, Marcelo
Nombre completo
Villagran Orellana, Marcelo Alejandro
Facultad
Email
marcelo.villagran@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationIdentification of structural determinants of the transport of the dehydroascorbic acid mediated by Glucose Transport GLUT1(Molecules, 2023)
; ;Burgos, Carlos F. ;Rivas, Coralia I.Mardones-Leiva, LorenaGLUT1 is a facilitative glucose transporter that can transport oxidized vitamin C (i.e., dehydroascorbic acid) and complements the action of reduced vitamin C transporters. To identify the residues involved in human GLUT1’s transport of dehydroascorbic acid, we performed docking studies in the 5 Å grid of the glucose-binding cavity of GLUT1. The interactions of the bicyclic hemiacetal form of dehydroascorbic acid with GLUT1 through hydrogen bonds with the -OH group of C3 and C5 were less favorable than the interactions with the sugars transported by GLUT1. The eight most relevant residues in such interactions (i.e., F26, Q161, I164, Q282, Y292, and W412) were mutated to alanine to perform functional studies for dehydroascorbic acid and the glucose analog, 2-deoxiglucose, in Xenopus laevis oocytes. All the mutants decreased the uptake of both substrates to less than 50%. The partial effect of the N317A mutant in transporting dehydroascorbic acid was associated with a 30% decrease in the Vmax compared to the wildtype GLUT1. The results show that both substrates share the eight residues studied in GLUT1, albeit with a differential contribution of N317. Our work, combining docking with functional studies, marks the first to identify structural determinants of oxidized vitamin C’s transport via GLUT1. - PublicationCell-specific expression of functional glucose transporter 8 in mammary glandDifferentiated mammary epithelial cells are responsible for milk synthesis during lactation, supporting early postnatal life in mammals. These cells are found in the terminal alveoli of a secretory epithelium, which is surrounded by myoepithelial cells and a stroma rich in fatty tissue. The aim of this study was to explore the cell-specific expression of the glucose transporter GLUT8 in mammary gland and evaluate its functionality for glucose transport, in order to confirm its role in lactose synthesis. Our histological results revealed that GLUT8 is expressed in adipocytes and the epithelial and myoepithelial cells in mammary gland, with a predominant intracellular granular pattern. Colocalization studies of endogenous and green fluorescent protein fused GLUT8 revealed their expressions in lysosome and Golgi, respectively, with Pearson's coefficient correlations of 0.82 ± 0.05 and 0.68 ± 0.16. Functional studies of dileucine to dialanine mutant of GLUT8 showed a fructose-sensitive 2-deoxy glucose uptake at a rate of 83.3 pmoles/(min∗106 cells), 7 folds over empty vector, with a 60 ± 4 and 72 ± 6% decline in 2-deoxy glucose in the presence of 20 and 50 mM fructose, respectively. We concluded that functional GLUT8 is expressed in mammary gland, localizing in mammary epithelial and myoepithelial cells, and adipocytes. In lactation, GLUT8 is expressed mainly in luminal epithelial cells, at the compartments of the endomembrane system. It is necessary to explore the physiological/pathological functions of GLUT8 in mammary gland, including its role in lactation.
- PublicationGLUT1 and GLUT8 support lactose synthesis in Golgi of murine mammary epithelial cells(Journal of Physiology and Biochemistry, 2019)
; ; ;Inostroza, Eveling ;Venegas, Camila ;Ruminot, Iván ;Parra Valencia, Esteban ;Maldonado, Mafalda ;Del Pozo-Iribarren, Reginald ;Rivas, Coralia I. ;Vera, Juan CarlosThe mammary gland increases energy requirements during pregnancy and lactation to support epithelial proliferation and milk nutrients synthesis. Lactose, the principal carbohydrate of the milk, is synthetized in the Golgi of mammary epithelial cells by lactose synthase from glucose and UPD galactose. We studied the temporal changes in the expression of GLUT1 and GLUT8 in mammary gland and their association with lactose synthesis and proliferation in BALB/c mice. Six groups were used: virgin, pregnant at 2 and 17 days, lactating at 2 and 10 days, and weaning at 2 days. Temporal expression of GLUT1 and GLUT8 transporters by qPCR, western blot and immunohistochemistry, and its association with lactalbumin, Ki67, and cytokeratin 18 within mammary tissue was studied, along with subcellular localization. GLUT1 and GLUT8 transporters increased their expression during mammary gland progression, reaching 20-fold increasing in GLUT1 mRNA at lactation (p < 0.05) and 2-fold at protein level for GLUT1 and GLUT8 (p < 0.05 and 0.01, respectively). The temporal expression pattern was shared with cytokeratin 18 and Ki67 (p < 0.01). Endogenous GLUT8 partially co-localized with 58 K protein and α-lactalbumin in mammary tissue and with Golgi membrane–associated protein 130 in isolated epithelial cells. The spatial-temporal synchrony between expression of GLUT8/GLUT1 and alveolar cell proliferation, and its localization in cis-Golgi associated to lactose synthase complex, suggest that both transporters are involved in glucose uptake into this organelle, supporting lactose synthesis.