Research Outputs

Now showing 1 - 3 of 3
  • Publication
    Non-indigenous species contribute equally to biofouling communities in international vs local ports in the Biobío region, Chile
    (Taylor & Francis, 2018)
    Leclerc, Jean-Charles
    ;
    Viard, Frédérique
    ;
    ; ;
    Neira Hinojosa, José
    ;
    Pérez Araneda, Claudia
    ;
    Silva, Francisco
    ;
    Growing coastal urbanization together with the intensification of maritime traffic are major processes explaining the increasing rate of biological introductions in marine environments. To investigate the link between international maritime traffic and the establishment of non-indigenous species (NIS) in coastal areas, biofouling communities in three international and three nearby local ports along 100 km of coastline in south-central Chile were compared using settlement panels and rapid assessment surveys. A larger number of NIS was observed in international ports, as expected in these ‘invasion hubs’. However, despite a few environmental differences between international and local ports, the two port categories did not display significant differences regarding NIS establishment and contribution to community structure over the studied period (1.5 years). In international ports, the free space could be a limiting factor for NIS establishment. The results also suggest that local ports should be considered in NIS surveillance programs in Chile.
  • Thumbnail Image
    Publication
    Habitat type drives the distribution of non-indigenous species in fouling communities regardless of associated maritime traffic
    (Biodiversity Research, 2020)
    Leclerc, Jean-Charles
    ;
    Viard, Frédérique
    ;
    ; ;
    Neira Hinojosa, José
    ;
    Pérez Araneda, Karla
    ;
    Silva, Francisco
    ;
    Biological invasions and changes in land and sea use are among the five major causes of global biodiversity decline. Shipping and ocean sprawl (multiplication of artificial structures at the expense of natural habitats) are considered as the major forces responsible for marine invasions and biotic homogenization. And yet, there is little evidence of their interplay at multiple spatial scales. Here, we aimed to examine this interaction and the extent to which the type of artificial habitat alters the distribution of native and non‐indigenous biodiversity. Location: Southeast Pacific—Central Chilean coastline.
  • Publication
    Characterization of Baker Fjord region through its heavy metal content on sediments (Central Chilean Patagonia)
    (Pontificia Universidad Católica de Valparaíso, 2015)
    Ahumada, Ramón
    ;
    ; ;
    Silva, Nelson
    The spatial distribution of heavy metals content (Ba, Cd, Cu, Pb, Sr and Zn) in sediments of the Baker Fjord and surrounding channels in the central region of the Chilean fjords (47°45'S, 48°15'S) is analyzed. The aim of the study was characterized the patterns of abundance and distribution of these metals in surface sediments. The area corresponds to a poorly studied zone with low human activity. Distribution patterns would be influenced by rainfall conditions (local erosion), fluvial (continental sediments carried by rivers), glacier (glacier flour) and estuarine circulation. Cluster analysis allows differentiation among the sampled sites and group with similar characteristics. Finally, the concentrations found were contrasted with average values of metamorphic rocks and show with some certainty that the values found for calendar for this area and the greatest concentrations are the result of natural enrichment.