Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Stable Reusability of Nanocellulose Aerogels with Amino Group Modification in Adsorption/Desorption Cycles for CO2 Capture
    (MDPI, 2025) ;
    Albornoz, Camila
    ;
    Rivera, Valentina
    ;
    Lira, Sebastian
    ;
    Valerio, Oscar
    ;
    ;
    Muñoz, Robinson
    ;
    Sandoval, Franco
    ;
    ; ; ;
    This study evaluated the stability and reusability of amino-functionalized nanocellulose aerogels as CO2-adsorbent materials. The modified aerogels, synthesized via a controlled silylation using N-[3-(trimethoxysilyl) propyl] ethylenediamine (DAMO), demonstrated excellent thermal stability up to 250 °C (TGA) and efficient CO2 adsorption through chemisorption, which was the main adsorption mechanism. The performance of the aerogels was assessed using both adsorption isotherms and the decay pressure technique, revealing that CO2 adsorption capacity increased with higher amino group loading (4.62, 9.24, and 13.87 mmol of DAMO). At 298 K and 4 bar, CO2 adsorption capacity increased proportionally with the amino group concentration, reaching values of 3.17, 5.98, and 7.86 mmol of CO2 g−1 polymer, respectively. Furthermore, over 20 adsorption/desorption cycles, the aerogels maintained 95% CO2 desorption at ambient temperature, indicating their potential for industrial use. These findings highlight the aerogels suitability as stable, reusable materials for large scale CO2 capture and storage technologies.
  • Publication
    Fly ash as a new versatile acid-base catalyst for biodiesel production
    (Elsevier, 2020) ; ;
    Muñoz, Robinson
    ;
    González, Aixa
    ;
    Ciudad, Gustavo
    ;
    Navia, Rodrigo
    ;
    Pecchi, Gina
    The production of fatty acid methyl esters (FAME) from waste frying oil (WFO) was studied using fly ash as received as a heterogeneous catalyst. The fly ash used in this research had a high content of both CaO and SO3, two compounds that have been previously proposed as catalysts in FAME production. The study was carried out on the basis of a response surface methodology (RSM). The model generated by RSM predicted as optimal conditions to obtain a 100% FAME yield at a methanol-to-oil molar ratio of 3.1:1, 11.2 (wt.% based on oil weight) fly ash and a temperature of 59 C with agitation at 245 rpm and 6 h of reaction time. Additional experiments comparing anhydrous with aqueous medium showed that fly ash presented a high catalytic capacity to transform free fatty acids (FFA) into FAME through consecutive hydrolysis and esterification processes (hydroesterification) compared with that associated with the transesterification mechanism. According to the results, the fly ash used in this study would act as a multipurpose or “versatile” catalyst due to its chemical composition with constituents that act as acidic and basic catalysts, therefore, catalyzing the transesterification and hydroesterification reactions simultaneously and increasing the conversion yields of FAME.