Options
Dr. Nuñez-Castellanos, Eduardo
Nombre de publicación
Dr. Nuñez-Castellanos, Eduardo
Nombre completo
Nuñez Castellanos, Eduardo
Facultad
Email
enunez@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationNumerical study on cyclic response of end-plate biaxial moment connection in box columnsThe 2008 Wenchuan-China earthquake showed the importance of considering the bidirectional seismic action as a cause of failure in column hinge mechanisms. Subsequently, the large 2011 Tohoku-Japan earthquake revealed that Special Moment Frames buildings, made of tubular columns (Hollow Structural Section or Built-up Box Section) and rigid connections with I-beams, did not suffer serious damage. However, only the ConXtech® ConXL™ moment connection has been prequalified according to the (American Institute of Construction) AISC Seismic Provisions for use with tubular columns and the rest of connections do not consider biaxial resistance. The research reported herein investigated the cyclic response of box-columns joints, connected to I beams using the four-bolt extended endplate connection, subjected to bidirectional bending and axial load on the column. To conduct the study, complex nonlinear finite element models (FEMs) of several I beam to box column joint configurations were constructed and analyzed under cyclic loading using the ANSYS software. The results reveal that the failure is concentrated in the beams of all joint configurations except for the columns with axial load equal to 75% of the column capacity, where a combined failure mechanism is achieved. The energy dissipation capacity of joints with a greater number of beams is lower than joints with fewer beams. The bidirectional effect of the seismic action and the level of axial load must be considered to avoid the formation of a column-hinge fragile failure mechanism also the behavior exhibited by 3D joints is more realistic than 2D joints according to real structures.
- PublicationCyclic performance of end-plate biaxial moment connection with HSS columnsThis paper presents a numerical study on the seismic performance of end-plate moment connection between I-beam to HSS (hollow structural section) column stiffened by outer diaphragms (EP-HSS). In previous experimental research, this moment connection showed a satisfactory performance according to requirements established in Seismic provisions. However, one type of joint was studied and bidirectional and axial loads were not considered. In this since, several configurations representative of 2D interior joints and 3D interior and exterior joints in a steel building were modeled and subjected to unidirectional or bidirectional cyclic displacements according to protocol in seismic provisions. Firstly, a similar joint configuration was calibrated from experimental data, obtaining an acceptable adjustment. The assessment of seismic performance was based on hysteretic curves, failure mechanisms, stiffness, dissipated energy, and equivalent damping. The results obtained showed a ductile failure modes for 2D and 3D joint configurations with EP-HSS moment connection. The axial load has no significant effect on the moment connection. However, it affects the column strength due to the increase of the stresses in the column wall. Compared with 2D joints, 3D joints reached higher deformations even when a similar number of beams is used. The external diaphragms to the column panel zone provided rigidity in the joints and no degradation of slope for each loop in load/reload segment for elastic loop; therefore, curves without pinching were observed. All inelastic deformation is concentrated mainly in the beams. A moment resistance above 80% of the capacity of the beam at a drift of 4% is achieved in all joints. From the results reached, the use of EP-HSS moment connection with hollow structural section columns is a reliable alternative in seismic zones when steel moment frames are employed.
- PublicationBidirectional response of weak-axis end-plate moment connections: Numerical approachBrittle failure mechanisms can affect the seismic performance of structures composed of intersecting moment resisting frames, if the biaxial effects are not considered. In this research, the bidirectional cyclic response of H-columns with weak-axis moment connections was studied using numerical models. Several configurations of joints with bidirectional effects and variable axial loads were studied using the finite element method (FEM) in ANSYS v17.2 software. The results obtained showed a ductile behavior when cyclic loads are applied. No evidence of brittle failure mechanisms in the studied joint configurations was observed, in line with the design philosophy established in current seismic provisions. However, beams connected to the column minor axis reached a partially restrained behavior. Joints with four beams connected to the column exhibited a partially restrained behavior for all axial load levels. An equivalent force displacement method was used to compare the hysteretic response of 2D and 3D joints, obtaining higher deformations in 3D joints with respect to 2D joints with a similar number of connected beams. Consequently, design procedures are not capable of capturing the 3D deformation phenomenon.