Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Bidirectional response of weak-axis end-plate moment connections: Numerical approach
    (MDPI, 2020) ;
    Parraguez, Guillermo
    ;
    Herrera, Ricardo
    Brittle failure mechanisms can affect the seismic performance of structures composed of intersecting moment resisting frames, if the biaxial effects are not considered. In this research, the bidirectional cyclic response of H-columns with weak-axis moment connections was studied using numerical models. Several configurations of joints with bidirectional effects and variable axial loads were studied using the finite element method (FEM) in ANSYS v17.2 software. The results obtained showed a ductile behavior when cyclic loads are applied. No evidence of brittle failure mechanisms in the studied joint configurations was observed, in line with the design philosophy established in current seismic provisions. However, beams connected to the column minor axis reached a partially restrained behavior. Joints with four beams connected to the column exhibited a partially restrained behavior for all axial load levels. An equivalent force displacement method was used to compare the hysteretic response of 2D and 3D joints, obtaining higher deformations in 3D joints with respect to 2D joints with a similar number of connected beams. Consequently, design procedures are not capable of capturing the 3D deformation phenomenon.
  • Thumbnail Image
    Publication
    Assessment of the seismic behavior of selective storage racks subjected to Chilean earthquakes
    (Metals, 2020) ;
    Aguayo, Catalina
    ;
    Herrera, Ricardo
    A seismic performance evaluation of selective storage racks subjected to Chilean Earthquakes was conducted using nonlinear pushover and nonlinear dynamic time-history analyses. Nine seismic records with two horizontal components and magnitude Mw > 7.7 were applied to numerical models of prototype rack structures. The prototype racks were designed considering two types of soil and two aspect ratios. The inelastic behavior of beam connections was included in the models. The results showed a predominantly elastic behavior, mainly in the cross-aisle direction, in comparison to the down-aisle direction. The inelastic action was concentrated in pallet beams and up-rigths. Higher values of base shear were reached, due to elevated rigidity in rack configurations, and an acceptable performance was obtained. A response reduction factor was reported in both directions, reaching values larger than the limit imposed by the Chilean standard. However, values below this limit were obtained in the cross-aisle direction, in some cases. Finally, in all cases, the calculated response modification factor is highly influenced by the overstrength obtained from seismic design.