Research Outputs

Now showing 1 - 2 of 2
Thumbnail Image
Publication

Seismic damage assessment of steel storage racks subjected to subduction earthquakes using a simplified method

2025, Mata, Ramón, Dr. Núñez-Castellanos, Eduardo

The incremental dynamic analysis is procedure highly used in the evaluation of structural systems and seismic design parameters for the linear design methods traditionally used in current building codes. The use of this methodology has been extended to industrial structures; however, in the case of steel racks subjected to subduction earthquakes such as the one in Chile, the procedure presents limitations in the post MCE scaling stage due to the high seismic demand, which does not allow its use. In this research, the seismic evaluation of steel storage racks is studied using a dynamic decremental analysis (DDA). The numerical research aims at a methodology proposed to evaluate seismic damage in steel storage racks, considering operational continuity, life safety and collapse prevention levels. A total of 4840 nonlinear models were performed to establish the performance levels, supported by the principles of the IDA according to FEMA P695. The MCE is used to scale the seismic records, however, a decremental scaling process is applied to identify the performance gap between the design intensity and the MCE intensity. The results obtained showed that the archetypes with lower load levels and lower height exhibited higher performance levels in the down-aisle direction compared to the transverse direction. In addition, the proposed methodology allows obtaining a performance level considering the seismic forces scaled to the MCE level through a methodology on steel racks, which had not been possible to evaluate using the IDA. Finally, the main problem in the study of steel racks design is to ensure the stability in the cross-aisle direction and stability of the stored goods in that direction.

Thumbnail Image
Publication

Influence of global slenderness and sliding pallets on seismic design of steel storage racks: A sensitivity analysis

2022, Dr. Maureira-Carsalade, Nelson, Dr. Núñez-Castellanos, Eduardo, Mata-Lemus, Ramón, Castro, Jorge, Guerrero, Néstor, Roco, Ángel

In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369. Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied parameter in the seismic design response in terms of fundamental period, drift, and base shear from a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred additional models were performed to evaluate the variation of seismic mass in the structural response. Results indicate a significant influence of live loads and seismic mass on steel racks designed for soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the seismic mass factor does not have a strong influence on structural response in comparison to the global slenderness.