• Home
  • UCSC journals portal
  • ANID repository
  • UCSC Thesis Repository
  • English
  • Español
  • Log In
    Have you forgotten your password?
  1. Home
  2. Chern–Simons and Born–Infeld gravity theories and Maxwell algebras type
 
Options
Chern–Simons and Born–Infeld gravity theories and Maxwell algebras type
Dra. Rodríguez-Durán, Evelyn 
Concha, P.
Peñafiel, D.
Salgado, P.
10.1140/epjc/s10052-014-2741-6
Springer Nature
2014
Recently it was shown that standard odd- and even-dimensional general relativity can be obtained from a (2n + 1)-dimensional Chern–Simons Lagrangian invariant under the B2n+1 algebra and from a (2n)-dimensional Born–Infeld Lagrangian invariant under a subalgebra LB2n+1, respectively. Very recently, it was shown that the generalized Inönü–Wigner contraction of the generalized AdS–Maxwell algebras provides Maxwell algebras of types Mm which correspond to the so-called Bm Lie algebras. In this article we report on a simple model that suggests a mechanism by which standard odd-dimensional general relativity may emerge as the weak coupling constant limit of a (2p + 1)- dimensional Chern–Simons Lagrangian invariant under the Maxwell algebra type M2m+1, if and only if m ≥ p. Similarly, we show that standard even-dimensional general relativity emerges as the weak coupling constant limit of a (2p)- dimensional Born–Infeld type Lagrangian invariant under a subalgebra LM2m of the Maxwell algebra type, if and only if m ≥ p. It is shown that when m < p this is not possible for a (2p +1)-dimensional Chern–Simons Lagrangian invariant under the M2m+1 and for a (2p)-dimensional Born–Infeld type Lagrangian invariant under the LM2m algebra.
Thumbnail Image
Download
Name

Chern–Simons and Born–Infeld gravity theories and Maxwell algebras type.pdf

Size

460.11 KB

Format

Checksum
Historial de mejoras
Proyecto financiado por: