Research Outputs

Now showing 1 - 10 of 74
  • Publication
    Demonstrating the substitutional doping of erbium (Er) in BiFeO3 nanoparticles for the enhanced solar-driven photocatalytic activity
    (Elsevier, 2025)
    Bharathkumar, S
    ;
    Mohan, Sakar
    ;
    ;
    Balakumar, S
    This study reports the synthesis of erbium (Er)-doped bismuth ferrite (BiFeO3/BFO) nanoparticles at varying molar concentrations (5, 10, and 15 %) using a sol-gel method. X-ray diffraction (XRD) analysis reveals a structural transformation from rhombohedral to orthorhombic upon Er3+ doping, confirming the successful incorporation of Er3+ ions into the BFO lattice. High-resolution transmission electron microscopy (HRTEM) images show that Er-doping leads to a reduction in particle size and a modification of the surface morphology. The bandgap of the Er-doped BFO samples decreases from 2.34 to 2.15 eV with increasing Er content, attributed to the formation of new Er 4f energy levels within the band structure. The magnetic properties of the samples also improve with increasing Er concentration. Photoluminescence (PL) spectra show reduced PL intensity for the 10 % Er-doped BFO sample, indicating a decrease in recombination rates, while electrochemical impedance spectroscopy (EIS) reveals a reduction in charge transfer resistance. Among the samples, the 10 % Er-doped BFO photocatalyst exhibits the highest photocatalytic efficiency. This enhanced activity is attributed to two key factors: efficient separation and migration of photogenerated charge carriers, and a reduced recombination rate of electron-hole pairs, both driven by the rare-earth doping in BFO. Radical trapping experiments further identify hydroxyl (OH•) radicals as the primary species responsible for photocatalytic degradation. This study provides valuable insights into the tunability of BFO's bandgap energy and photocatalytic properties through Er doping.
  • Thumbnail Image
    Publication
    Z-scheme configured iron oxide/g-C3N4 nanocomposite system for solar-driven H2 production through water splitting
    (Elsevier, 2024) ;
    Sivakumar, Bharathkumar
    ;
    Murugan, A.
    ;
    Cordero, Mary
    ;
    Muthamizh, S.
    ;
    Ganesh, Kavitha
    ;
    Rashid, Najwa
    ;
    Babu, Shaik
    ;
    Mohan, Sakar
    A nanocomposite composed of α-Fe2O3/g-C3N4 is synthesized using a modified ultrasonication approach, which engineered a robust interfacial contact in the system. Phase formation and morphological features are confirmed via XRD and electron-microscopy techniques. XPS revealed the native oxidation states of the elements and chemisorption-mediated interactions in the system. This developed composite produced hydrogen at a rate of 1494 μmolg− 1 h− 1, which is around 6.6 times higher than the g-C3N4 system. The observed enhancement is attributed to the Z-scheme configuration, leading to the suitable band edge alignments, charge separation and extended lifetime of the carriers in the composite.
  • Thumbnail Image
    Publication
    Impact of Copper(II)-Imidazole complex modification on Polycrystalline TiO2: Insights into formation, characterization, and photocatalytic performance
    (MDPI, 2024) ;
    Ayyakannu-Sundaram, Ganeshraja
    ;
    Kanniah, Rajkumar
    ;
    Anbalagan, Krishnamoorthy
    ;
    Kulandaivelu, Kaviyarasan
    Micrometer-sized polycrystalline anatase particles are widely used in materials and life sciences, serving as essential components in photocatalytic materials. The ability to tailor their composition, shape, morphology, and functionality holds significant importance. In this study, we identified and examined the non-destructive route of Copper(II) implantation at the surface of polycrystalline TiO2. The [Cu(en)(Im)2]2+ complex ion demonstrated a remarkable affinity to concentrate and bind with the semiconductor’s surface, such as anatase, forming a surface-bound adduct: ≡TiO2 + [Cu(en)(Im)2]2+ → ≡TiO2//[Cu(en)(Im)2]2+. The misalignment of Fermi levels in TiO2//[Cu(en)(Im)2]2+ triggered electron transfer, leading to the reduction of the metal center, releasing Copper(I) in the process. Although less efficient, the released Copper(I) encountered a highly favorable environment, resulting in the formation of the surface complex TiO2:CuIIsc. The implanted Cu(I) was converted back into Cu(II) due to re-oxidation by dissolved oxygen. The penetration of the metal ion into the surface level of the polycrystalline TiO2 lattice was influenced by surface residual forces, making surface grafting of the Cu(II) ion inevitable due to surface chemistry. FTIR, UV–vis, Raman, XRD, EPR, and surface morphological (SEM, EDAX, and HRTEM) analyses identified the typical surface grafting of the Cu(II) cluster complex on the anatase surface matrix. Moreover, the XRD results also showed the formation of an impure phase. The TiO2 polycrystalline materials, modified by the incorporation of copper complexes, demonstrated an enhanced visible-light photocatalytic capability in the degradation of Rhodamine B dye in aqueous solutions. This modification significantly improved the efficiency of the photocatalytic process, expanding the applicability of TiO2 to visible light wavelengths. These studies open up the possibility of using copper complexes grafted on metal oxide surfaces for visible-light active photocatalytic applications. Moreover, this investigation not only showcases the improved visible-light photocatalytic behavior of copper-modified TiO2 polycrystalline materials, but also underscores the broader implications of this improvement in the advancement of sustainable and efficient water treatment technologies.
  • Publication
    Morphological impact of Perovskite-Structured Lanthanum CobaltOxide (LaCoO3) nanoflakes toward supercapacitor applications
    (ACS Publications, 2024) ;
    Moorthi, Kanmani
    ;
    Sivakumar, Bharathkumar
    ;
    Chokkiah, Bavatharani
    ;
    Mohan, Sakar
    In this study, perovskite-structured lanthanum cobalt oxide(LaCoO3/LCO) systems with particle and flake morphologies were developed using sol−gel and hydrothermal methods, respectively, in order to investigate their morphological structure-dependent properties for potential supercapacitor applications. The structural analysis confirms that both methods yield LaCoO3with improved crystalline properties. The energy storage performance of the developed materials is studied in a three-electrode configuration using a 1 MKOH electrolyte. The results indicated superior electrochemical performance for the LCO nanoflakes, exhibiting specific capacitances of ∼215 F g−1 at a scan rate of 5 mV s−1 and ∼136 F g−1 at a current density of 1 A g−1. In comparison, the LCO nanoparticles showed ∼119 F g−1 at a scan rate of 5 mV s−1 and ∼99F g−1 at a current density of 1 A g−1. This difference can be largely attributed to their respective morphologies, porous structures, and surface defects. Further, the nanoflakes demonstrated an exceptional capacitance retention of ∼97% even after 5000 charge−discharge cycles. The findings of this study suggest that the properties of perovskite LaCoO3 can be tuned by adjusting its morphology through various synthesis methods, making LaCoO3 a viable and robust system for energy storage applications.
  • Thumbnail Image
    Publication
    Ethylene elimination using activated carbons obtained from Baru (Dipteryx alata vog.) waste and impregnated with copper oxide
    (MDPI, 2024) ;
    Solar-Sáez, Victor
    ;
    Oliveira, Ana Carolina de Jesus
    ;
    Pereira-Rodrigues, Camilla
    ;
    de Almeida, Maria
    ;
    Teixeira-Mársico, Eliane
    ;
    Scalize, Paulo
    ;
    Ferreira-de Oliveira, Tatianne
    Ethylene is a plant hormone regulator that stimulates chlorophyll loss and promotes softening and aging, resulting in a deterioration and reduction in the post-harvest life of fruit. Commercial activated carbons have been used as ethylene scavengers during the storage and transportation of a great variety of agricultural commodities. In this work, the effect of the incorporation of copper oxide over activated carbons obtained from baru waste was assessed. Samples were characterized by X-ray diffraction (XRD), N2 adsorption-desorption at −196 °C, field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), and infrared (IR) spectroscopy. The results showed that the amount of ethylene removed using activated carbon obtained from baru waste and impregnated with copper oxide (1667 μg g−1) was significantly increased in comparison to the raw activated carbon (1111 μg g−1). In addition, carbon impregnated with copper oxide exhibited better adsorption performance at a low ethylene concentration. Activated carbons produced from baru waste are promising candidates to be used as adsorbents in the elimination of ethylene during the storage and transportation of agricultural commodities at a lower cost.
  • Publication
    Exploring the antimicrobial activity of hydrothermally synthesized copper pyrophosphate nanoflakes
    (Elsevier BV, 2024)
    Aswini, Ravi
    ;
    Manivannan, Nandhagopal
    ;
    Padmanaban, Annamalai
    ;
    ;
    Dhandapani, Kathirvelu
    ;
    SaravanaVadivu, Arunachalam
    ;
    Rameshkumar, Perumal
    ;
    Hajinur Hirad, Abdurahman
    In recent years, infections and the escalating resistance to antimicrobial drugs have emerged as significant health concerns. Due to their remarkable effectiveness and minimal potential for bacteria to develop resistance, copper-based nanomaterials are being considered as prospective alternatives to conventional antibiotics. In this study, copper pyrophosphate nanoflakes were synthesized using a simple hydrothermal technique with an inorganic phosphate source. These nanoflakes, characterized by a high aspect ratio, exert a substantial impact on bacterial cell walls, effectively eliminating microbial pathogens. X-ray diffraction (XRD) analysis confirmed the monoclinic phase of the copper pyrophosphate nanomaterial, while the band gap energy of 2.7 eV was estimated from the Tauc plot. Additionally, the antimicrobial efficacy of Cu2P2O7 was evaluated against various gram-negative, gram-positive, and fungal pathogens at different concentrations. Notably, all tested bacterial strains exhibited moderate antimicrobial effects at concentrations of 5 mg/mL. For instance, S. aureus and E. coli displayed a 13 mm zone of inhibition, demonstrating excellent activity and lower cytotoxicity. These findings underscore the potential of Cu2P2O7 as a promising candidate for the development of novel drugs targeting pathogenic bacteria affecting human health.
  • Publication
    Tailored engineering of rod-shaped core@shell ZnO@CeO2 nanostructures as an optical stimuli-responsive in sunscreen cream
    (Elsevier, 2024) ;
    Sahlevani, Saeed
    ;
    Pandiyarajan, Thangaraj
    ;
    Arulraj, Arunachalam
    ;
    Sanhueza, Felipe
    ;
    Contreras, David
    ;
    Gracia-Pinilla, M.
    ;
    Mangalaraja, Ramalinga
    The catalytic efficiency of the materials can be boosted with the selective designing (nanostructures) including the core@shell which aids in attaining the separation of photoinduced charge carriers. However, to effectively separate the carriers and reduce the rate of recombination, tuning the thickness of the shell wall is a vital one. The one-dimensional (1D) rod-like shell wall-controlled ZnO@CeO2 core@shell structures were successfully prepared via co-precipitation and hydrothermal methods using the hexamethylenetetramine (HMTA) as a reagent. The CeO2 shell wall thickness was fine-tuned between 15 and 70 nm with a variation in the concentration of HMTA reagent. The results revealed that the concentration of HMTA played a significant role in the formation of ZnO@CeO2 core@shell structures and in tuning their thickness. The FE-SEM images evidenced the core-shell structures formation with the specific thickness and uniformity. The HR-TEM images confirmed the homogeneity and regular form of the shell thickness. The unit cell and crystallite size were identified from the XRD analysis. The constructed core-shell structures were further employed in the formula of the prototypes of sunscreen and their photoprotective performance was analyzed in the view to cut the solar light irradiation in a new sunscreen formulation. The developed core-shell ZnO@CeO2 structures showed the excellent optical absorption in both the UV as well as visible regions.
  • Publication
    Electrochemical properties of nanoscale Cu Co spinel ferrite system: A promising positive electrode for high performance supercapacitors
    (Elsevier, 2024)
    Murugan, A
    ;
    Siva, V
    ;
    Shameem, A
    ;
    Deepika, R
    ;
    Bharathkumar, S
    ;
    ;
    Asath-Bahadur, S
    There is an enormous demand for energy storage applications with a high specific capacity, superior energy and power density, and long-life cycles because of the increase in portable electronic appliances. The use of ternary metal oxide electrode materials for energy storage applications in supercapacitors based on multi-redox sites has gained more attention from researchers due to their outstanding specific capacitance and numerous redox sites. Copper cobalt ferrites (CuCoFe2O4) nanoparticles (NPs) have been synthesised by the simple microwave combustion method and employed as a positive electrode material for energy storage in supercapacitors (SCs). To study the physical and electrochemical properties of the prepared nanoparticles by XRD, FTIR, SEM-EDX, HR-TEM, and electrochemical analysis have been carried out. X-ray diffraction planes indicating the cubic spinel structure with a space group of Fd-3m and the crystalline phase purity of the synthesised CuCoFe2O4 NPs were also characterized by Rietveld refinement. HR-TEM analysis of the existing agglomeration of particles and SAED pattern shows the excellent crystalline nature of the materials. The CuCoFe2O4 electrode obtained an outstanding specific capacitance of 237.5 F g−1 at 0.5 A g−1 current density in a 3 M KOH electrolyte in a standard three-electrode system. Further fabricated of a solid-state asymmetric supercapacitor (ASC) device by using CuCoFe2O4 NPs and activated carbon (AC) as the positive and negative electrodes, respectively. This ASC device offers a superior energy density value of 16 Wh kg−1 and a power density of 8048 W kg−1. In addition, the ASCs device exhibits cycle stability of 82 % after 10,000 GCD charge and discharge cycles at a current density of 40 A g−1, displaying its high cycling stability.
  • Publication
    Carbon Dots: A multifunctional nano-sized giant tool forthe detection probe and physical reformation of NiMoO 4 inSolid-State for enriched energy storage application
    (Wiley, 2024) ;
    Annamalai, Arun
    ;
    Annamalai, Kumaresan
    ;
    Ayyanduarai, Nagarajan
    ;
    Ravichandran, Ramya
    ;
    Annamalai, Padmanaban
    ;
    Elumalai, Sundaravadivel
    Designing low-cost, effective and greener materials via a non-sophisticated strategy is most important for future research. Here, they made a new dual endeavor using carbon dots (CDs) as an environment protection probe for selective detection of environmental toxins, followed by the solid-state structural reformer to prepare NiMoO4 (NM) via mechanochemical-based solid grinding method. The prepared CDs, NM and NM-CDs combination is examined through various techniques. The prepared CDs selectively detect Cr6+, Ru3+, and Doxycycline independently. Also, in this work, a groundbreaking strategy is found to prepare morphology-tailored NM using CDs through a solid-state grinding method without adding any other toxic solvents or reagents. The CDs-induced NM-CDs (15) look like a 2D nano-sheet with enriched surface area compared to its bare NM. The fabricated electrode provides the highest capacitance value of 1947 F g−1, almost three times grander than the bare 1D rod-like electrode. Then, fabricated asymmetric supercapacitor NM-CDs (15)//AC system delivers a high energy density of 43.9 Wh Kg−1 at a power density of 684 W Kg−1. Overall, a single CDs serve multiple roles in the environment and energy applications with a greener structure tailoring agent and a better booster for re energy storage properties.
  • Publication
    Praseodymium doping-induced band structure tunning in bismuth ferrite (Bi1-Pr FeO3) nanofibers for the enhanced photocatalytic properties
    (Elsevier, 2024) ;
    Bharathkumar, S.
    ;
    Sakar, M.
    ;
    Balakumar, S.
    The study investigates the influence of praseodymium (Pr) doping on bismuth ferrite (BiFeO3/BFO) nanofibers and their structural, morphological, magnetic, optical, and photocatalytic properties. A series of bismuth ferrite nanofibers with varying concentration of Pr (Bi1-xPrxFeO3, x = 0.00, 0.05, 0.10, and 0.15 mol%) were successfully synthesized using an electrospinning technique. XRD patterns revealed that structural transformation occurred from rhombohedral to orthorhombic upon effective doping of Pr3+ into BFO nanofibers. The X-ray photoelectron spectroscopy analysis confirmed that Bi, Fe, and O maintained their native oxidation states of +3 and -2, respectively in the bare and doped systems. Furthermore, the optical band gap value was significantly reduced from 2.35 to 2.22 eV as well as the recombination rates of charge carriers in the doped systems, especially in BP0.15O system. The photocatalytic performance of the prepared samples was studied by measuring the decomposition of rhodamine B (RhB) under sunlight irradiation. Outcomes showed that the doped-BFO nanofibers exhibited enhanced photocatalytic performance compared to pure BFO, with the BP0.15O system showing the 98 % degradation in 60 min. This enhancement could be attributed to the presence of Pr-energy levels, which facilitating enhanced separation, and charge transfer to the surface for the effective redox reactions.