Research Outputs

Now showing 1 - 2 of 2
  • Publication
    Enhancement of ciprofloxacin degradation in aqueous system by heterogeneous catalytic ozonation
    (Environmental Science and Pollution Research, 2020)
    González-Labrada, Katia
    ;
    Richard, Romain
    ;
    Andriantsiferana, Caroline
    ;
    ;
    Jáuregui-Haza, Ulises J.
    ;
    Manero, Marie-Hélène
    Fluoroquinolones are extensively used in medicine due to their antimicrobial activity. Their presence in water inhibits microorganism activity in conventional wastewater treatment plants. This study aims to evaluate the technical feasibility of applying heterogeneous catalytic ozonation to eliminate ciprofloxacin (CIP) as a representative of fluoroquinolone antibiotics normally present in municipal wastewater discharges. Experiments were conducted in a semi-batch stirred slurry reactor, using 0.7 L of 100 mg L−1 CIP aqueous solution, at pH 3 and 30 °C. Experimental results show that single ozonation can easily oxidise CIP molecules (68%) within the first 5 min, leading to the generation of refractory oxidation by-products. However, when heterogeneous catalytic ozonation is applied using iron oxide supported on MFI synthetic zeolite, total degradation of CIP is observed at 5 min and a higher mineralisation rate is obtained. A novel sequential process is developed for CIP mineralisation. In a first step, a flash single ozonation is applied and CIP molecules are broken down. Then, a catalytic ozonation step is conducted by adding the Fe/MFI catalyst into the reactor. As a result of catalyst addition, 44% of Total Organic Carbon (TOC) is eliminated within the first 15 min, compared to single ozonation where only 13% of TOC removal is reached in the same time. The application of this sequential process to a real wastewater effluent spiked with CIP leads to 52% of TOC removal.
  • Publication
    Gaseous ozone decomposition over high silica zeolitic frameworks
    (Wiley, 2018)
    Brodu, Nicolas
    ;
    Manero, Marie-Hélène
    ;
    Andriantsiferana, Caroline
    ;
    Pic, Jean-Stéphane
    ;
    For several decades, it has been known that ozone emissions are harmful to humans, plants, and animals. Heterogeneous catalytic decomposition is an efficient process for removing ozone from air. This study examines the effect of the zeolite's framework and pore width on efficiency for decomposing gaseous ozone. Four highly hydrophobic zeolites are used: a large cavity zeolite (Faujasite/H‐FAU), a medium pore zeolite with parallel channel (Mordenite/H‐MOR), and two medium pore zeolites with interconnected channels (H‐ZSM‐5/H‐MFI and Na‐ZSM‐5/Na‐MFI). Experiments were conducted in fixed‐bed flow reactors loaded with zeolite at ambient conditions (20 °C and 101 kPa). Zeolite surfaces were analyzed during the experiments in order to understand the influence of physical and chemical surface properties on the ozone decomposition mechanism. A higher amount of ozone is eliminated using H‐MOR, compared with the zeolite samples H‐FAU, H‐MFI, and Na‐MFI. Pore width and micropore framework size distribution (channel and cages) appear to be key factors. A narrow channel or cage, slightly larger than the ozone molecule size, seems to promote ozone interactions with Lewis acid sites. Fourier transform infrared spectroscopy shows that Lewis acid sites (LAS), located on the walls of zeolite pores, decompose ozone. This leads to the formation of atomic oxygen species that could react with another ozone molecule to form dioxygen. Hence, LAS are regenerated, ready to decompose another ozone molecule once more.