Options
Dr. Valdes-Morales, Hector
Nombre de publicaciĂ³n
Dr. Valdes-Morales, Hector
Nombre completo
Valdes Morales, Hector
Facultad
Email
hvaldes@ucsc.cl
ORCID
1 results
Research Outputs
Now showing 1 - 1 of 1
- PublicationFluorine-free synthesis of reduced graphene oxide modified anatase TiO2 nanoflowers photoanode with highly exposed {0 0 1} facets for high performance dye-sensitized solar cell(Elsevier, 2020)
; ;Pugazhenthiran, Nalandhiran ;Mangalaraja, R. ;Vijaya, S. ;Suresh, S. ;Kandasamy, M. ;Sathishkumar, P. ;Gracia-Pinilla, M. ;Murugesan, S.Anandan, S.A facile, fluorine-free and non-toxic one-pot solvothermal technique was adopted to synthesis TiO2 nanoflowers with anatase phase having 98% highly exposed {001} facets (TiO2 {001} NFs). The morphology, grain size and crystallinity of pure TiO2 {001} NFs and reduced graphene oxide (RGO) sheets modified TiO2 {001} NFs (RGOTiO2 {001} NFs) were inspected by diffuse reflectance spectroscopy (DRS), X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM images showed the development of anatase TiO2 {001} NFs with high crystallinity and uniform shape. The influence of RGO on the performance of the TiO2 {001} NFs as a photoanode material in dye-sensitized solar cell (DSSC) was examined. High energy conversion efficiency (ɳ) was observed for the DSSC based on a photoanode made of RGO-TiO2 {001} NFs when compared to DSSCs based on photoanodes fabricated using pure TiO2 {001} NFs and commercial Degussa P25 TiO2, which exhibited η of 6.78, 4.59 and 2.71%, respectively. The improved performance of the DSSC based on a photoanode composed of RGOTiO2 {001} NFs was due to its good crystallinity, high dye intake and enhanced light-harvesting properties. Moreover, the presence of RGO greatly hindered the recombination of photogenerated electrons and increased their lifespan. This work discloses a novel efficient photoanode design for improving performance of the DSSCs.