Research Outputs

Now showing 1 - 3 of 3
  • Publication
    Rationalizing Fe-Modified TiO2 through doping, composite formation, and single-phase structuring for enhanced photocatalysis via inter- and intra-charge transfers
    (Elsevier, 2024) ;
    Sivakumar, Bharathkumar
    ;
    Vijayarangan, R.
    ;
    Mohan, Sakar
    ;
    Ilangovan, R.
    ;
    Amin, Mohammed
    ;
    Vyas, Shweta
    ;
    El-Bahy, Zeinhom
    This study sheds light on how the properties of titanium dioxide (TiO2) are influenced when it is modified with iron (Fe), leading to the formation of Fe-doped-TiO2, Fe2O3-TiO2 composite, and single-phase FeTiO3 systems. The structural formation of the materials, oxidation state, and chemical environments of the elements are analyzed using XRD and XPS techniques. Band structures with UV–visible light driven properties and suitable redox potentials with improved recombination resistance along with an active inter- and intra-charge transfers were observed for Fe2O3-TiO2 and FeTiO3 systems. The photocatalytic efficiency was found to be superior for FeTiO3 system, degrading ~97 and 100 % of phenol, malachite green and rhodamine B dyes in 150 min, respectively along with enhanced recyclability. Interestingly, a competitive S- and Z-scheme was predicted for Fe2O3-TiO2 composite, explaining its photocatalytic mechanism. The scavenger and total organic carbon analyses revealed the radicals driving the photocatalytic reactions and the nature of degradation products, respectively.
  • Publication
    Morphological impact of Perovskite-Structured Lanthanum CobaltOxide (LaCoO3) nanoflakes toward supercapacitor applications
    (ACS Publications, 2024) ;
    Moorthi, Kanmani
    ;
    Sivakumar, Bharathkumar
    ;
    Chokkiah, Bavatharani
    ;
    Mohan, Sakar
    In this study, perovskite-structured lanthanum cobalt oxide(LaCoO3/LCO) systems with particle and flake morphologies were developed using sol−gel and hydrothermal methods, respectively, in order to investigate their morphological structure-dependent properties for potential supercapacitor applications. The structural analysis confirms that both methods yield LaCoO3with improved crystalline properties. The energy storage performance of the developed materials is studied in a three-electrode configuration using a 1 MKOH electrolyte. The results indicated superior electrochemical performance for the LCO nanoflakes, exhibiting specific capacitances of ∼215 F g−1 at a scan rate of 5 mV s−1 and ∼136 F g−1 at a current density of 1 A g−1. In comparison, the LCO nanoparticles showed ∼119 F g−1 at a scan rate of 5 mV s−1 and ∼99F g−1 at a current density of 1 A g−1. This difference can be largely attributed to their respective morphologies, porous structures, and surface defects. Further, the nanoflakes demonstrated an exceptional capacitance retention of ∼97% even after 5000 charge−discharge cycles. The findings of this study suggest that the properties of perovskite LaCoO3 can be tuned by adjusting its morphology through various synthesis methods, making LaCoO3 a viable and robust system for energy storage applications.
  • Thumbnail Image
    Publication
    Z-scheme configured iron oxide/g-C3N4 nanocomposite system for solar-driven H2 production through water splitting
    (Elsevier, 2024) ;
    Sivakumar, Bharathkumar
    ;
    Murugan, A.
    ;
    Cordero, Mary
    ;
    Muthamizh, S.
    ;
    Ganesh, Kavitha
    ;
    Rashid, Najwa
    ;
    Babu, Shaik
    ;
    Mohan, Sakar
    A nanocomposite composed of α-Fe2O3/g-C3N4 is synthesized using a modified ultrasonication approach, which engineered a robust interfacial contact in the system. Phase formation and morphological features are confirmed via XRD and electron-microscopy techniques. XPS revealed the native oxidation states of the elements and chemisorption-mediated interactions in the system. This developed composite produced hydrogen at a rate of 1494 μmolg− 1 h− 1, which is around 6.6 times higher than the g-C3N4 system. The observed enhancement is attributed to the Z-scheme configuration, leading to the suitable band edge alignments, charge separation and extended lifetime of the carriers in the composite.