Research Outputs

Now showing 1 - 10 of 73
  • Publication
    Enhanced Photocatalytic Efficacy and Stability in Antibiotic Pollution Mitigation Using BiVO4 Nanoballs Encased in Ultrathin Polymeric g-C3N4 Nanocomposites under Visible Light Exposure
    (ACS Publications, 2024) ;
    Govinda raj, Muniyandi
    ;
    Sundaram-Ganeshraja, Ayyakannu
    ;
    Kaviyarasan, Kulandaivelu
    ;
    Pugazhenthiran, Nalandhiran
    ;
    Katayama, Kenji
    ;
    Theja-Vaskuri, Chandra
    ;
    Bosco, Aruljothy
    ;
    Neppolian, Bernaurdshaw
    Antibiotic overuse and indiscriminate disposal ultimately lead to overexploitation of the ecosystems expanding requirements, producing significant environmental and biological consequences. Advanced oxidation processes (AOPs) have kindled the interest of many researchers in targeting the destruction of antimicrobial and waterborne pollutants. As a result, an improvement of low-cost, high-efficiency photocatalysts for the successful decomposition of antibiotics is critical for the cleaning of harmful contaminants in rivers and lakes. In the current work, a simple hydrothermal approach was used to create the bismuth vanadate nanoballs (BiVO4) anchored to the exterior of the ultrathin g-C3N4.It was named g-C3N4/BiVO4(X) (X = 5, 10, 15, and 20%) nanocomposites, and the photocatalytic removal of ciprofloxacin (CPX) and amoxicillin (AMX) was investigated using synthesized composites. According to the advanced characterization techniques, the synthesized composites exhibit superior purity and crystalline nature. The electron transfer occurring within the g-C3N4, in conjunction with the extension of BiVO4 nanoballs, enhances the generation of photoexcited electron−hole (e−/h+) pairs. This phenomenon contributes significantly to the improved photocatalytic activity observed in the g-C3N4/BiVO4 system. Furthermore, the photocatalytic efficiency exhibited by g-C3N4/BiVO4(10%) nanocomposites in antibiotic removal surpasses that of both bare materials and other composite counterparts. The elimination of antibiotics was aided by reactive oxygen species (ROS)such as O2•−, h+, and OH. Finally, g-C3N4/BiVO4(10%), the intermediate byproduct of CPX and AMX decomposition, was discovered, and a probable CPX and AMX removal route was postulated. The g-C3N4/BiVO4(10%) composite exhibits long-term stability after five cycles. This study applies a green and ecologically responsive technique to the development of high-performance photocatalysts for wastewater remediation.
  • Thumbnail Image
    Publication
    Impact of Copper(II)-Imidazole complex modification on Polycrystalline TiO2: Insights into formation, characterization, and photocatalytic performance
    (MDPI, 2024) ;
    Ayyakannu-Sundaram, Ganeshraja
    ;
    Kanniah, Rajkumar
    ;
    Anbalagan, Krishnamoorthy
    ;
    Kulandaivelu, Kaviyarasan
    Micrometer-sized polycrystalline anatase particles are widely used in materials and life sciences, serving as essential components in photocatalytic materials. The ability to tailor their composition, shape, morphology, and functionality holds significant importance. In this study, we identified and examined the non-destructive route of Copper(II) implantation at the surface of polycrystalline TiO2. The [Cu(en)(Im)2]2+ complex ion demonstrated a remarkable affinity to concentrate and bind with the semiconductor’s surface, such as anatase, forming a surface-bound adduct: ≡TiO2 + [Cu(en)(Im)2]2+ → ≡TiO2//[Cu(en)(Im)2]2+. The misalignment of Fermi levels in TiO2//[Cu(en)(Im)2]2+ triggered electron transfer, leading to the reduction of the metal center, releasing Copper(I) in the process. Although less efficient, the released Copper(I) encountered a highly favorable environment, resulting in the formation of the surface complex TiO2:CuIIsc. The implanted Cu(I) was converted back into Cu(II) due to re-oxidation by dissolved oxygen. The penetration of the metal ion into the surface level of the polycrystalline TiO2 lattice was influenced by surface residual forces, making surface grafting of the Cu(II) ion inevitable due to surface chemistry. FTIR, UV–vis, Raman, XRD, EPR, and surface morphological (SEM, EDAX, and HRTEM) analyses identified the typical surface grafting of the Cu(II) cluster complex on the anatase surface matrix. Moreover, the XRD results also showed the formation of an impure phase. The TiO2 polycrystalline materials, modified by the incorporation of copper complexes, demonstrated an enhanced visible-light photocatalytic capability in the degradation of Rhodamine B dye in aqueous solutions. This modification significantly improved the efficiency of the photocatalytic process, expanding the applicability of TiO2 to visible light wavelengths. These studies open up the possibility of using copper complexes grafted on metal oxide surfaces for visible-light active photocatalytic applications. Moreover, this investigation not only showcases the improved visible-light photocatalytic behavior of copper-modified TiO2 polycrystalline materials, but also underscores the broader implications of this improvement in the advancement of sustainable and efficient water treatment technologies.
  • Publication
    Removal of benzothiazole from contaminated waters by ozonation: The role of direct and indirect ozone reactions
    (De Gruyter, 2016) ;
    Zaror, Claudio
    ;
    Jekel, Martin
    Benzothiazoles are emerging chemical pollutants mainly coming from leather, paper and rubber industries; due to their use as: herbicides, corrosion inhibitors, anti-freezers, and vulcanisation accelerators. This article presents experimental data on ozone treatment of benzothiazole contaminated waters. The effect of the initial concentration of benzothiazole, ozone dosage, temperature (10-30 °C), and pH (2-9), on ozonation removal rate were assessed at bench scale. Experimental results show that reaction between ozone and benzothiazole could be approximated to a second-order kinetic law. Kinetic parameters for direct and indirect ozone reactions are estimated and temperature dependence of rate parameters is evaluated. Moreover, an initial degradation pathway of benzothiazole ozonation is proposed.
  • Thumbnail Image
    Publication
    Evidence of synergy effects between zinc and copper oxides with acidic sites on natural zeolite during photocatalytic oxidation of ethylene using operando DRIFTS studies
    (Catalysts, 2023)
    Abreu, Norberto J
    ;
    ;
    Zaror, Claudio A.
    ;
    Ferreira- de Oliveira, Tatianne
    ;
    Azzolina-Jury, Federico
    ;
    Thibault-Starzyk, Frédéric
    In this article, the role of surface sites of modified zeolites with semiconductor nanoparticles as alternative photocatalyts for protecting post-harvest foodstuff from the detrimental effects of ethylene is addressed. Two single and one double catalyst based on zinc and copper oxides supported over modified zeolite samples were prepared. Physical, chemical, and surface properties of prepared materials were studied by several characterization methods. UV-Vis absorption spectra show that the applied modification procedures increase the optical absorption of light in the UV and visible regions, suggesting that an increase in the photocatalytic activity could take place mainly in the obtained co-impregnated catalyst. An ethylene conversion around 50% was achieved when the parent natural zeolite support was modified with both transition metal oxides, obtaining higher removal efficiency in comparison to single oxide catalysts. Adsorption and photocatalytic oxidation experiments were also performed using single and double catalysts supported over fumed silica, attaining lower ethylene conversion and thus highlighting the role of zeolite surfaces as adsorption sites for ethylene during photocatalytic reactions. Operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies reveal that a synergistic mechanism occurs, involving ethylene adsorption at acidic sites of zeolite and its photocatalytic oxidation due to the generation of radicals by the light activation of nanoparticles of zinc and copper oxides.
  • Publication
    Enhancement of ciprofloxacin degradation in aqueous system by heterogeneous catalytic ozonation
    (Environmental Science and Pollution Research, 2020)
    González-Labrada, Katia
    ;
    Richard, Romain
    ;
    Andriantsiferana, Caroline
    ;
    ;
    Jáuregui-Haza, Ulises J.
    ;
    Manero, Marie-Hélène
    Fluoroquinolones are extensively used in medicine due to their antimicrobial activity. Their presence in water inhibits microorganism activity in conventional wastewater treatment plants. This study aims to evaluate the technical feasibility of applying heterogeneous catalytic ozonation to eliminate ciprofloxacin (CIP) as a representative of fluoroquinolone antibiotics normally present in municipal wastewater discharges. Experiments were conducted in a semi-batch stirred slurry reactor, using 0.7 L of 100 mg L−1 CIP aqueous solution, at pH 3 and 30 °C. Experimental results show that single ozonation can easily oxidise CIP molecules (68%) within the first 5 min, leading to the generation of refractory oxidation by-products. However, when heterogeneous catalytic ozonation is applied using iron oxide supported on MFI synthetic zeolite, total degradation of CIP is observed at 5 min and a higher mineralisation rate is obtained. A novel sequential process is developed for CIP mineralisation. In a first step, a flash single ozonation is applied and CIP molecules are broken down. Then, a catalytic ozonation step is conducted by adding the Fe/MFI catalyst into the reactor. As a result of catalyst addition, 44% of Total Organic Carbon (TOC) is eliminated within the first 15 min, compared to single ozonation where only 13% of TOC removal is reached in the same time. The application of this sequential process to a real wastewater effluent spiked with CIP leads to 52% of TOC removal.
  • Publication
    A theoretical and experimental approach for photocatalytic degradation of caffeic acid using BiOBr microspheres
    (Materials Science & Engineering B, 2021) ;
    Otilia Diaz, N.
    ;
    Rodríguez, C.
    ;
    Durán-Álvarez, Juan
    ;
    Talreja, Neetu
    ;
    Quispe-Fuentes, Issis
    ;
    Martínez-Avelar, Carolina
    ;
    Bizarro, Monserrat
    ;
    Mera, Adriana
    This study describes theoretical and experimental considerations to optimize the photocatalytic degradation of caffeic acid in water using 3D-BiOBr based materials under visible light irradiation. Three BiOBr materials were synthesized through the solvothermal method using different bromide sources, namely potassium bromide (KBr) and the ionic liquid (IL) 1-butyl-3-methylimidazolium bromide. Morphological and chemical changes were observed in IL based 3D-BiOBr materials. The theoretical optimization of the experimental conditions in heterogeneous photocatalysis tests (pH and dose of catalyst) were simulated using the MODDE 12.0.1 software. A central composite design (CCD) was applied to obtain a response surface to elucidate the optimal conditions. This model predicted that the maximum photocatalytic degradation can be achieved at pH of 6.7 and a photocatalyst dose of 344 mg L−1. The optimal experimental conditions were tested using the three synthesized 3D-BiOBr materials. The results showed that the highest degradation efficiency and mineralization yield were obtained using the BiOBr microspheres synthesized with the IL at 145 °C.
  • Thumbnail Image
    Publication
    Use of combination of coagulation and adsorption process for the landfill leachate treatment from Casablanca city
    (Elsevier, 2017) ;
    Chaouki, Zineb
    ;
    Khalil, Fouad
    ;
    Ijjaali, Mustapha
    ;
    Rafqah, Salah
    ;
    Sarakha, Mohamed
    ;
    Zaitan, Hicham
    This article presents a combination of coagulation–flocculation and powder activated carbon (PAC) adsorption as a treatment process for landfill leachate. Leachates were collected from a municipal solid waste landfill in Mediouna site, Casablanca city. Ferric chloride (FeCl3) is used here as a coagulant to study the optimum conditions for the removal of chemical oxygen demand (COD), colour, total suspended solids (TSS) and turbidity in jar tests. This coagulant showed the highest removal efficiency in terms of COD (62.5%), turbidity (92.5%), colour (80%) and least sludge volume generation (30% v/v) for an optimum coagulant dose of 12 g Fe3+ L–1. Combining coagulation with adsorption process onto PAC enhances the removal of COD, turbidity and colour reduction by a 77%, a 99% and a 99.7%, respectively. These results show that coagulation-adsorption could be used as a promising hybrid process for the treatment of landfill leachates.
  • Publication
    Building a novel noble metal-free Cu3P/ZnS/g-C3N4 ternary nanocomposite with multi interfacial charge transfer pathways for highly enhanced photocatalytic water splitting
    (Elsevier, 2024) ;
    Rameshbabu, R.
    ;
    Siaw Paw, Johnny Koh
    ;
    Kaviyarasan, Kulandaivelu
    ;
    Jadoun, Sapana
    ;
    Amalraj, John
    ;
    Kiong, Tiong Sieh
    For renewable energy, it is crucial to create effective photocatalysts with enhanced photo charge separation and transfer to produce photocatalytic hydrogen (H2) efficiently utilizing light energy. Due to their distinct qualities and features, carbonaceous materials have so far been shown to be high-performance co-catalysts to substitute some conventionally costly metal materials in photocatalytic water splitting. Here, a novel ternary nanocomposite, simple hydrothermal process ball milling assisted and wet impregnation approach, a promising ternary nanocomposite is created as an efficient solar light driven photocatalyst. Utilizing a variety of analytical techniques, 3 % Cu3P/ZnS/g-C3N4 nanocomposites as catalysts were characterized in order to check the hydrogen production and investigate their structural properties. The hydrogen production capability of the catalyst is studied by irradiating Na2SO3 + Na2S solutes using a halogen bulb (250 W). The results demonstrated that in terms of photocatalytic activity towards H2 production, 3 % Cu3P/ZnS/g-C3N4 catalyst performed better than 3 % Cu3P/ZnS, Cu3P, ZnS, and g-C3N4. A composite containing 7.5 wt% g-C3N4 demonstrated exceptional durability during photocatalytic hydrogen production, resulting in a 23,086 mol h− 1 g− 1 rate. Higher stability in electron-hole pairs created a higher absorption level of solar light could be responsible for this remarkable performance.
  • Publication
    Zeolites as recyclable adsorbents/catalysts for biogas upgrading: Removal of octamethylcyclotetrasiloxane
    (Elsevier, 2017) ;
    Cabrera-Codony, Alba
    ;
    Georgi, Anett
    ;
    Gonzalez-Olmos, Rafael
    ;
    Martín, Maria
    Natural and synthetic zeolites with different properties (porous structure, SiO2/Al2O3 ratio, acidity and Fe-loading) were evaluated as adsorbents/catalysts for octamethylcyclotetrasiloxane (D4) removal in dynamic adsorption tests. BEA type zeolites, with high content of Lewis and Brønsted sites, promoted the catalytic D4 ring-opening leading on the formation of smaller a-x-silanediols, which are narrower molecules able to diffuse into the channel system. Wet oxidation processes were used for the regeneration of a spent BEA zeolite, including ozonation and Fenton-like treatment. Both treatments were optimized to recover almost completely the D4 uptake of the iron-exchanged Fe-BEA in the first use. Thus, its feasibility to be reused was evaluated in successive adsorption/oxidation cycles, recovering up to 80% in at least three subsequent steps. However, in further cycles the accumulation of D4 and/or by-products led to a successive decline in the catalytic activity of the zeolites, hampering not only the capacity to transform D4 into lineal silanediols, thus reducing the adsorption capacity, but also the catalytic activity towards promoting Fenton-like reactions during regeneration.
  • Thumbnail Image
    Publication
    Highly sensitive and selective detection of glutathione using ultrasonic aided synthesis of graphene quantum dots embedded over amine-functionalized silica nanoparticles
    (Ultrasonics Sonochemistry, 2022)
    Kaimal, Reshma
    ;
    Vinoth, Victor
    ;
    Shrikrishna Salunke, Amol
    ;
    ;
    Viswanathan Mangalaraja, Ramalinga
    ;
    Aljafari, Belqasem
    ;
    Anandan, Sambandam
    Glutathione (GSH) is the most abundant antioxidant in the majority of cells and tissues; and its use as a biomarker has been known for decades. In this study, a facile electrochemical method was developed for glutathione sensing using voltammetry and amperometry analyses. In this study, a novel glassy carbon electrode composed of graphene quantum dots (GQDs) embedded on amine-functionalized silica nanoparticles (SiNPs) was synthesized. GQDs embedded on amine-functionalized SiNPs were physical-chemically characterized by different techniques that included high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), UV–visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy. The newly developed electrode exhibits a good response to glutathione with a wide linear range (0.5–7 µM) and a low detection limit (0.5 µM) with high sensitivity(2.64 µA µM−1). The fabricated GQDs-SiNPs/GC electrode shows highly attractive electrocatalytic activity towards glutathione detection in the neutral media at low potential due to a synergistic surface effect caused by the incorporation of GQDs over SiNPs. It leads to higher surface area and conductivity, improving electron transfer and promoting redox reactions. Besides, it provides outstanding selectivity, reproducibility, long-term stability, and can be used in the presence of interferences typically found in real sample analysis.