Options
Dr. Valdés-Morales, Héctor
Nombre de publicación
Dr. Valdés-Morales, Héctor
Nombre completo
Valdés Morales, Héctor
Facultad
Email
hvaldes@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationRationalizing Fe-Modified TiO2 through doping, composite formation, and single-phase structuring for enhanced photocatalysis via inter- and intra-charge transfers(Elsevier, 2024)
; ;Sivakumar, Bharathkumar ;Vijayarangan, R. ;Mohan, Sakar ;Ilangovan, R. ;Amin, Mohammed ;Vyas, ShwetaEl-Bahy, ZeinhomThis study sheds light on how the properties of titanium dioxide (TiO2) are influenced when it is modified with iron (Fe), leading to the formation of Fe-doped-TiO2, Fe2O3-TiO2 composite, and single-phase FeTiO3 systems. The structural formation of the materials, oxidation state, and chemical environments of the elements are analyzed using XRD and XPS techniques. Band structures with UV–visible light driven properties and suitable redox potentials with improved recombination resistance along with an active inter- and intra-charge transfers were observed for Fe2O3-TiO2 and FeTiO3 systems. The photocatalytic efficiency was found to be superior for FeTiO3 system, degrading ~97 and 100 % of phenol, malachite green and rhodamine B dyes in 150 min, respectively along with enhanced recyclability. Interestingly, a competitive S- and Z-scheme was predicted for Fe2O3-TiO2 composite, explaining its photocatalytic mechanism. The scavenger and total organic carbon analyses revealed the radicals driving the photocatalytic reactions and the nature of degradation products, respectively. - PublicationPraseodymium doping-induced band structure tunning in bismuth ferrite (Bi1-Pr FeO3) nanofibers for the enhanced photocatalytic propertiesThe study investigates the influence of praseodymium (Pr) doping on bismuth ferrite (BiFeO3/BFO) nanofibers and their structural, morphological, magnetic, optical, and photocatalytic properties. A series of bismuth ferrite nanofibers with varying concentration of Pr (Bi1-xPrxFeO3, x = 0.00, 0.05, 0.10, and 0.15 mol%) were successfully synthesized using an electrospinning technique. XRD patterns revealed that structural transformation occurred from rhombohedral to orthorhombic upon effective doping of Pr3+ into BFO nanofibers. The X-ray photoelectron spectroscopy analysis confirmed that Bi, Fe, and O maintained their native oxidation states of +3 and -2, respectively in the bare and doped systems. Furthermore, the optical band gap value was significantly reduced from 2.35 to 2.22 eV as well as the recombination rates of charge carriers in the doped systems, especially in BP0.15O system. The photocatalytic performance of the prepared samples was studied by measuring the decomposition of rhodamine B (RhB) under sunlight irradiation. Outcomes showed that the doped-BFO nanofibers exhibited enhanced photocatalytic performance compared to pure BFO, with the BP0.15O system showing the 98 % degradation in 60 min. This enhancement could be attributed to the presence of Pr-energy levels, which facilitating enhanced separation, and charge transfer to the surface for the effective redox reactions.
- PublicationZ-scheme driven charge transfer in g-C3N4/α-Fe2O3 nanocomposites enabling photocatalytic degradation of crystal violet and chromium reduction(Elsevier, 2024)
;Bharathkumar, S. ;Mohan, Sakar ;Alsaeedi, Hoda ;Hwan Oh, Tae ;Vignesh, Shanmugam ;Sundaramoorthy, ArunmethaIn this study, we demonstrated the design and fabrication of iron oxide-embedded protonated graphitic carbon nitride (α-Fe2O3/p-g-C3N4) nanocomposites for photocatalytic dye degradation and heavy metal reduction applications under sunlight irradiation. The developed nanocomposites, with varying weight percentages of α-Fe2O3, were characterized for their structural (XRD, FTIR, XPS), optical (absorption and photoluminescence), morphological (FE-SEM, TEM), and electrochemical (EIS) properties to elucidate their structure-property relationships. The synthesis method ensures the uniform dispersion of α-Fe2O3 nanoparticles, with a particle size range of 50–60 nm, onto p-g-C3N4. XPS analysis suggests the formation of an electrical layer at the interface of α-Fe2O3/p-g-C3N4, facilitating the formation of a Z-scheme heterojunction. The photoluminescence and EIS spectra of the nanocomposite indicated effective separation and transfer of photo-induced charge carriers, aided by a reduced bandgap energy of ∼2.63 eV. Notably, the optimized 10 wt% α-Fe2O3/p-g-C3N4 nanocomposite exhibited superior photocatalytic activity, degrading nearly 100 % of crystal violate dye and reducing 98 % of Cr(VI) ions, compared to bare p-g-C3N4, which degraded around 43 % of the dye and reduced 39 % of Cr(VI) ions under sunlight irradiation. Scavenger studies indicated that α-Fe2O3/p-g-C3N4 nanocomposites produce adequate superoxide anions and hydroxyl radicals for dye degradation and heavy metal ion reduction. The composite also demonstrated consistent recyclability up to 5 cycles with around 100 % cyclical efficiency. The pH-dependent photoreduction and cyclic dye degradation by the 10 wt% α-Fe2O3/p-g-C3N4 photocatalyst indicated excellent stability, making it suitable for the treatment of multi-pollutant wastewater.