Options
Dr. Valdés-Morales, Héctor
Nombre de publicación
Dr. Valdés-Morales, Héctor
Nombre completo
Valdés Morales, Héctor
Facultad
Email
hvaldes@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationConstruction novel highly active photocatalytic H2 evolution over noble-metal-free trifunctional Cu3P/CdS nanosphere decorated g-C3N4 nanosheet(Elsevier, 2024)
; ;Rameshbabu, R. ;Paw-Koh, Siaw ;Kaviyarasan, Kulandaivelu ;Tak-Yaw, Chong ;Kiong-Tiong, Sieh ;Benedict, F. ;Yusaf, Talal ;Kadirgama, K.Pasupuleti, JagadeeshHydrogen energy possesses immense potential in developing a green renewable energy system. However, a significant problem still exists in improving the photocatalytic H2 production activity of metal-free graphitic carbon nitride (g-C3N4) based photocatalysts. Here is a novel Cu3P/CdS/g-C3N4 ternary nanocomposite for increasing photocatalytic H2 evolution activity. In this study, systematic characterizations have been carried out using techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), Raman spectra, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area analysis (BET), electrochemical impedance (EIS), and transient photocurrent response measurements. Surprisingly, the improved 3CP/Cd-6.25CN photocatalyst displays a high H2 evolution rate of 125721 μmol h− 1 g− 1. The value obtained exceeds pristine g-C3N4 and Cu3P/CdS by 339.8 and 7.6 times, respectively. This could be the maximum rate of hydrogen generation for a g–C3N4–based ternary nanocomposite ever seen when exposed to whole solar spectrum and visible light (λ > 420 nm). This research provides fresh perspectives on the rational manufacture of metal-free g-C3N4 based photocatalysts that will increase the conversion of solar energy. By reusing the used 3CP/Cd/g-C3N4 photocatalyst in five consecutive runs, the stability of the catalyst was investigated, and their individual activity in the H2 production activity was assessed. To comprehend the reaction mechanisms and emphasise the value of synergy between the three components, several comparison systems are built. - PublicationPraseodymium doping-induced band structure tunning in bismuth ferrite (Bi1-Pr FeO3) nanofibers for the enhanced photocatalytic propertiesThe study investigates the influence of praseodymium (Pr) doping on bismuth ferrite (BiFeO3/BFO) nanofibers and their structural, morphological, magnetic, optical, and photocatalytic properties. A series of bismuth ferrite nanofibers with varying concentration of Pr (Bi1-xPrxFeO3, x = 0.00, 0.05, 0.10, and 0.15 mol%) were successfully synthesized using an electrospinning technique. XRD patterns revealed that structural transformation occurred from rhombohedral to orthorhombic upon effective doping of Pr3+ into BFO nanofibers. The X-ray photoelectron spectroscopy analysis confirmed that Bi, Fe, and O maintained their native oxidation states of +3 and -2, respectively in the bare and doped systems. Furthermore, the optical band gap value was significantly reduced from 2.35 to 2.22 eV as well as the recombination rates of charge carriers in the doped systems, especially in BP0.15O system. The photocatalytic performance of the prepared samples was studied by measuring the decomposition of rhodamine B (RhB) under sunlight irradiation. Outcomes showed that the doped-BFO nanofibers exhibited enhanced photocatalytic performance compared to pure BFO, with the BP0.15O system showing the 98 % degradation in 60 min. This enhancement could be attributed to the presence of Pr-energy levels, which facilitating enhanced separation, and charge transfer to the surface for the effective redox reactions.
- PublicationEnhanced photocatalytic degradation of ZnTiO3/Polycarbazole (PCz) composite towards toxic azo dye(Arabian Journal for Science and Engineering, 2023)
;Jeffrey Joseph John Jeya Kamaraj ;Padmanaban,Annamalai ;Lawrence Daniel Stephen Tamil ;Senthil Pandian Muthu ;Ramasamy PerumalsamyThe ZnTiO3 material was synthesized by sol–gel method with the assistance of ethanol as solvent. The oxidative polymerization method was used to synthesize polycarbazole (PCz). The ball milling technique was employed to synthesize the mechanically composited nanoparticles—ZnTiO3/PCz nanocomposite. The synthesized composites were analysed using powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrum (XPS), UV–Vis absorption spectrum (UV–Vis), scanning electron microscope (SEM), and high-resolution transmission electron microscope (HRTEM). The degradation of crystal violet (CV) in water under visible-light irradiation was used to assess the photocatalytic behaviour of the synthesized catalyst. The result shows that the ZnTiO3/PCz composites exhibit greater photocatalytic activity than other materials. Polycarbazole in composite material acts as an electron reservoir, actively trapping the photogenerated electrons which considerably lowers the probability of recombination and increases the degrading effect of the catalyst.