Research Outputs

Now showing 1 - 2 of 2
  • Publication
    Ethylene adsorption onto natural and transition metal modified Chilean zeolite: An operando DRIFTS approach
    (Microporous and Mesoporous Materials, 2019)
    Abreu, Norberto J.
    ;
    ;
    Zaror, Claudio A.
    ;
    Azzolina Jury, Federico
    ;
    Melendrez, Manuel F.
    Ethylene is a plant growth regulator that induces accelerated softening and ripening of fruits during transport and storage. Among the most applied methods for ethylene control, adsorption appears as a cheap and efficient technique. In this work, the effect of the incorporation of transition metals into natural Chilean zeolite on ethylene adsorption is investigated. Natural zeolite mainly composed of clinoptilotite and mordenite is modified using copper and zinc nitrate solutions and calcined under oxygen flow at 623 K, generating different transition metal modified zeolites. Parent and modified zeolites were characterised by X-ray diffraction, X-ray fluorescence spectroscopy and nitrogen adsorption. Zeolite surface modifications were assessed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Experimental results reveal the incorporation of Cu2+ and Zn(2+ )as new compensating cations into the zeolite framework. Ethylene adsorption isotherms show an enhancement on the adsorption capacity of Cu-exchanged zeolite. This result is not only associated to the higher micropore surface area of this sample, but also to the higher affinity of ethylene molecules to copper cations incorporated on this zeolite. DRIFTS operando experiments of ethylene adsorption in the absence and in the presence of moisture reveal a competitive mechanism of water and ethylene molecules toward hydroxyl sites. Si-OH-Al and Si-OH sites are rapidly occupied with water, reducing the adsorption of ethylene.
  • Thumbnail Image
    Publication
    The effect of visible light on the postharvest life of tomatoes (Solanum lycopersicum L.)
    (Horticulturae, 2023)
    de Bruijn, Johannes
    ;
    Fuentes, Nicole
    ;
    Solar, VĂ­ctor
    ;
    Valdebenito, Ana
    ;
    Vidal, Leslie
    ;
    MelĂ­n, Pedro
    ;
    Fagundes, Francis
    ;
    Tomatoes (Solanum lycopersicum L.) are widely cultivated and consumed, but ripening should be carried out in controlled storage conditions to extend their shelf life and avoid economic losses. The aim of this study was to investigate the effects of visible artificial light on the ripening and quality of fresh market tomatoes stored at a low temperature and high humidity. The postharvest performance with respect to the ripening of organically grown tomatoes in the Toscano cultivar, with a long storage life, was studied in the presence and the absence of visible LED light. The maturation kinetics of the tomatoes was modeled using the Power Law equation. Results showed that tomatoes stored in the presence of light exhibited an increased respiration rate and a faster preclimacteric phase. Lycopene content, total soluble solids, and maturity index increased in the presence of light. Hence, light increased the postharvest ripening of tomatoes, affecting their shelf life.