Options
Dr. Valdes-Morales, Hector
Nombre de publicación
Dr. Valdes-Morales, Hector
Nombre completo
Valdes Morales, Hector
Facultad
Email
hvaldes@ucsc.cl
ORCID
1 results
Research Outputs
Now showing 1 - 1 of 1
- PublicationMorphological impact of Perovskite-Structured Lanthanum CobaltOxide (LaCoO3) nanoflakes toward supercapacitor applications(ACS Publications, 2024)
; ;Moorthi, Kanmani ;Sivakumar, Bharathkumar ;Chokkiah, BavatharaniMohan, SakarIn this study, perovskite-structured lanthanum cobalt oxide(LaCoO3/LCO) systems with particle and flake morphologies were developed using sol−gel and hydrothermal methods, respectively, in order to investigate their morphological structure-dependent properties for potential supercapacitor applications. The structural analysis confirms that both methods yield LaCoO3with improved crystalline properties. The energy storage performance of the developed materials is studied in a three-electrode configuration using a 1 MKOH electrolyte. The results indicated superior electrochemical performance for the LCO nanoflakes, exhibiting specific capacitances of ∼215 F g−1 at a scan rate of 5 mV s−1 and ∼136 F g−1 at a current density of 1 A g−1. In comparison, the LCO nanoparticles showed ∼119 F g−1 at a scan rate of 5 mV s−1 and ∼99F g−1 at a current density of 1 A g−1. This difference can be largely attributed to their respective morphologies, porous structures, and surface defects. Further, the nanoflakes demonstrated an exceptional capacitance retention of ∼97% even after 5000 charge−discharge cycles. The findings of this study suggest that the properties of perovskite LaCoO3 can be tuned by adjusting its morphology through various synthesis methods, making LaCoO3 a viable and robust system for energy storage applications.