Research Outputs

Now showing 1 - 3 of 3
  • Publication
    CDOM dynamics in two coastal zones influenced by contrasting land uses in northern Patagonia
    (Elsevier, 2024) ;
    García-Tuñon, Wirmer
    ;
    Curra-Sánchez, Elizabeth
    ;
    Valerio, Aline
    ;
    Broitman, Bernardo
    ;
    Saldías, Gonzalo
    ;
    Nimptsch, Jorge
    ;
    Vargas, Cristian
    Colored dissolved organic matter (CDOM) is an indicator and optical proxy of terrestrial processes such as land use with allochthonous material fluxes, biogeochemical cycles, and water quality in coastal zones influenced by rivers. However, the role of land use changes on the spatial and temporal availability of CDOM has been poorly explored in Chile. Here, we studied two watersheds with similar climates and contrasting land use patterns in northern Patagonia considering the sampling of CDOM in their estuarine and adjacent coastal ocean. An empirical algorithm with the coefficients adjusted to our study areas to estimate CDOM was applied to Landsat 7 and 8 images to examine temporal variability of CDOMest from 2001 to 2011 and 2013–2020. Our results showed an increasing trend of CDOMest in both areas. Different trends in land use patterns between the two watersheds showed a significant correlation with CDOMest and contrasting associations with environmental variables. Higher humification was found in Yaldad in comparison with Colu. In both areas, allochthonous materials predominated, especially during austral spring according to the low values of the Fluorescence Index (FI). Our results highlight the potential of CDOMest to parameterize biogeochemical cycling models and to further understand the dynamics of CDOM in coastal ecosystems.
  • Publication
    Environmental variability and larval supply to wild and cultured shellfish populations
    (Elsevier, 2022) ;
    Broitman, Bernardo
    ;
    Flores, Raúl
    ;
    Saldías, Gonzalo
    ;
    Piñones, Andrea
    ;
    Pinochet, Andre
    ;
    Galán-Mejía, Alexander
    ;
    Navarrete, Sergio
    Coastal upwelling ecosystems support some of the most productive fisheries of the planet together with a large shellfish aquaculture sector that depends on oceanographic processes to deliver planktonic larvae to replenish and feed the farmed stock. Coastal shellfish aquaculture operations in Chile and Perú have experienced large interannual fluctuations in larval supply over the past decade, yet the drivers of such variability remain unidentified. We focused on the effects of environmental variability on larval supply of the farmed Peruvian bay scallop Argopecten purpuratus in a bay in northern Chile (Tongoy Bay, 30∘ S) that accounts for over 90% of countrywide landings. We examined the hypothesis that the environmental processes governing larval supply were shared with wild benthic invertebrates with planktonic larval development and compared time series of larval abundance for the scallop with larval supply rates to benthic populations of two well-studied wild intertidal species: the Chthamalid barnacle Jehlius cirratus and the purple mussel Perumytilus purpuratus. To this end, we examined the cross-correlation of larval supply to environmental variability using MODIS satellite fields of sea surface temperature (SST) chlorophyll-a concentration (chl-a) and fluorescence line height (nFLH), together with three climate indices relevant for the south east Pacific sector: the Southern Oscillation index (SOI), the Pacific Decadal Oscillation (PDO) and the Antarctic Oscillation Index (AAO). Our results showed that over the five-year study period (2009–2013), patterns of larval supply to the scallop population were related to interannual variability in the environmental processes as captured by their Empirical Orthogonal Functions (EOFs), likely to adult condition before spawning. Surprisingly, larval supply for none of the wild species showed a clear association to the EOFs. In contrast, scallops and wild species showed significant association to lower frequency climate variability as captured by the SOI and the PDO, but not the AAO. Results suggest that larval supply patterns to Tongoy Bay may be modulated by regional patterns of climatic variability, particularly of tropical origin. Thus, changes in coastal oceanography associated with ongoing changes in global climate could have strong and lasting effects on the supply of seedstock for wild and cultivated species across this eastern boundary coastal system and argue for the establishment of long-term ocean observing and early warning systems along the region.
  • Publication
    Contrasting land-uses in two small river basins impact the colored dissolved organic matter concentration and carbonate system along a river-coastal ocean continuum
    (Elsevier, 2022) ;
    Curra-Sánchez, Elizabeth
    ;
    Cornejo-D'Ottone, Marcela
    ;
    Nimptsch, Jorge
    ;
    Aguayo, Mauricio
    ;
    Broitman, Bernardo
    ;
    Saldías, Gonzalo
    ;
    Vargas, Cristian
    Human activities have led to an increase in land use change, with effects on the structure and functioning of ecosystems. The impact of contrasting land uses along river basins on the concentration of colored dissolved organic matter (CDOM) reaching the coastal zone, and its relationship with the carbonate system of the adjacent coastal ocean, is poorly known. To understand the relationship between land use change, CDOM and its influence on the carbonate system, two watersheds with contrasting land uses in southern Chile were studied. The samples were collected at eight stations between river and adjacent coastal areas, during three sampling campaigns in the austral summer and spring. Chemical and biological samples were analyzed in the laboratory according to standard protocols. Landsat 8 satellite images of the study area were used for identification and supervised classification using remote sensing tools. The Yaldad River basin showed 82% of native forest and the Colu River basin around 38% of grassland (agriculture). Low total alkalinity (AT) and Dissolved Inorganic Carbon (DIC), but high CDOM proportions were typically observed in freshwater. A higher CDOM and humic-like compounds concentration was observed along the river-coastal ocean continuum in the Yaldad basin, characterized by a predominance of native forests. In contrast, nutrient concentrations, AT and DIC, were higher in the Colu area. Low CaCO3 saturation state (ΩAr < 2) and even undersaturation conditions were observed at the coastal ocean at Yaldad. A strong negative correlation between AT, DIC and ΩAr with CDOM/fDOM, suggested the influence of terrestrial material on the seawater carbon chemistry. Our results provide robust evidence that land uses in river basins can influence CDOM/fDOM proportion and its influence on the carbonate chemistry of the adjacent coastal, with potential implications for the shellfish farming activity in this region