Options
Dr. Lara-Peña, Carlos
Nombre de publicación
Dr. Lara-Peña, Carlos
Nombre completo
Lara Peña, Carlos Cristian
Facultad
Email
carlos.lara@ucsc.cl
ORCID
14 results
Research Outputs
Now showing 1 - 10 of 14
- PublicationInfluence of intensive agriculture on benthic macroinvertebrate assemblages and water quality in the Aconcagua river basin (Central Chile)This study assessed natural variation in the macroinvertebrate assemblages (MIB) and water quality in one of the main basins with the largest agricultural activities in Chile (Aconcagua River Basin). We sampled throughout the annual cycle; nine sampling sites were established along the basin, classifying according to agricultural area coverage as least-disturbed, intermediate, and most-disturbed. We collected 56 macroinvertebrate taxa throughout the entire study area. Multivariate analysis shows significant differences among the three disturbance categories in different seasons, both water quality variables and the MIB structure. Distance-based linear model (DistLM) analysis for all seasons explained more than 95.9% of the macroinvertebrate assemblages, being significantly explained by chemical oxygen demand, pH, total coliforms, nitrites, elevation, and water temperature. ANOVA test revealed significant differences in the proportion of noninsect individuals, macroinvertebrates density, and the number of taxa among the three disturbance categories (p < 0.05). In general, water temperature, conductivity, chemical oxygen demand, ammonium, nitrites, and nitrates increased their values downstream in the basin. Our results indicate that the elevation gradient and increment in agricultural land use in the basin had a strong influence on water quality and MIB. A better understanding of these ecosystems could help conservation and integrated watershed management.
- PublicationGlobal urban environmental change drives adaptation in white clover(Science, 2022)
;Santangelo, James ;Ness, Rob ;Fitzpatrick, Connor ;Innes, Simon ;Koch, Sophie ;Miles, Lindsay ;Munim, Samreen ;Peres Neto, Pedro ;Prashad, Cindy ;Tong, Alex ;Aguirre, Windsor ;Akinwole, Philips ;Alberti, Marina ;Álvarez, Jackie ;Anderson, Jill ;Anderson, Joseph ;Ando, Yoshino ;Andrew, Nigel ;Angeoletto, Fabio ;Anstett, Daniel ;Anstett, Julia ;Aoki Gonçalves, Felipe ;Andis Arietta, A. ;Arroyo, Mary ;Austen, Emily ;Baena Díaz, Fernanda ;Barker, Cory ;Baylis, Howard ;Beliz, Julia ;Benitez Mora, Alfonso ;Bickford, David ;Biedebach, Gabriela ;Blackburn, Gwylim ;Boehm, Mannfred ;Bonser, Stephen ;Bragger, Jesse ;Branquinho, Cristina ;Brans, Kristien ;Bresciano, Jorge ;Brom, Peta; ;Bucharova, Anna ;Burt, Briana ;Cahill, James ;Campbell, Katelyn ;Carlen, Elizabeth ;Carmona, Diego ;Castellanos, María ;Centenaro, Giada ;Chalen, Izan ;Chaves, Jaime A. ;Chávez Pesqueira, Mariana ;Chen, Xiao-Yong ;Chilton, Angela ;Chomiak, Kristina ;Cisneros Heredia, Diego ;Cisse, Ibrahim ;Classen, Aimée ;Comerford, Mattheau ;Fradinger, Camila ;Corney, Hannah ;Crawford, Andrew ;Crawford, Kerri ;Dahirel, Maxime ;David, Santiago ;De Haan, Robert ;Dean, Clare ;del Val, Ek ;Deligiannis, Eleftherios ;Denney, Derek ;Dettlaff, Margarete ;DiLeo, Michelle ;Ding, Yuan-Yuan ;Domínguez López, Moisés ;Dominoni, Davide ;Draud, Savannah ;Dyson, Karen ;Ellers, Jacintha ;Espinosa, Carlos ;Essi, Liliana ;Falahati Anbaran, Mohsenbu ;Falcão, Jéssica ;Fargo, Hayden ;Fellowes, Mark ;Fitzpatrick, Raina ;Flaherty, Leah ;Flood, Pádraic ;Flores, María ;Fornoni, Juan ;Foster, Amy ;Frost, Christopher ;Fuentes, Tracy ;Fulkerson, Justin ;Gagnon, Edeline ;Garbsch, Frauke ;Garroway, Colin ;Gerstein, Aleeza ;Giasson, Mischa ;Girdler, E. ;Gkelis, Spyros ;Godsoe, William ;Golemiec, Anneke ;Golemiec, Mireille ;González Lagos, César ;Gorton, Amanda ;Gotanda, Kiyoko ;Granath, Gustafl ;Greiner, Stephan ;Griffiths, Joanna ;Grilo, Filipa ;Gundel, Pedro ;Hamilton, Benjamin ;Hardin, Joyce ;He, Tianhua ;Heard, Stephen ;Henriques, André ;Hernández Poveda, Melissa ;Hetherington Rauth, MollyDeacon,Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale. - PublicationSatellite-derived variability of sea surface salinity and geostrophic currents off Western Patagonia(MDPI, 2024)
; ;Saldías, Gonzalo ;Figueroa, Pedro ;Carrasco, David ;Narváez, DiegoPérez-Santos, IvánThe coastal ocean off western Patagonia is one of the main coastal regions with high freshwater inputs from rivers, rain, and glaciers in the Southern Hemisphere. This study conducts an analysis of the seasonal and interannual variations in sea surface salinity and meridional geostrophic transports, specifically focusing on the Cape Horn Current, using improved satellite-derived data of sea surface salinity (SSS) and geostrophic velocities spanning an ∼11-year period (September 2011–August 2022). Our results reveal a clear salinity minimum in a coastal band between 42–54°S associated with the highest freshwater content. The average geostrophic currents are stronger south of 49°S, in line with the location of the Cape Horn Current. The average salinity minimum tends to disappear south of 54°S, with salinity values increasing slightly southward. The seasonal cycle of salinity shows the most pronounced minimum in summer (∼33.2–33.4). The greatest variability in salinity (standard deviation of salinity fields) occurs in the southern region of the Cape Horn Current. Hovmöller plots reveal two cores of minimum salinity observed in spring and summer (∼33.3–33.4). The freshwater off the Gulf of Penas contributes to the northern core. The meridional geostrophic transport differs between the northern and southern sections, with transports predominantly towards the Equator (Pole) north (south) of about 47–48°S during spring–summer. There is a marked seasonal variability in the magnitude and northern limit of the southward-flowing Cape Horn Current, being extended further north during winter and with a maximum average magnitude during summer–fall (about −2×104 m2 s−1). On the interannual scale, a major drop in surface salinity occurred off northern and central Patagonia during 2018–2019. Finally, a potential long-term freshening trend is observed in the coastal area off southern Patagonia (south of 52°S), although prolonged data records are essential to confirm this pattern. - PublicationSeasonal variability of SST fronts in the inner sea of Chiloé and Its adjacent Coastal Ocean, Northern Patagonia(MDPI, 2021)
; ;Saldías, Gonzalo ;Hernández, Wilber ;Muñoz, Richard ;Rojas, Cristian ;Vásquez, Sebastián ;Pérez-Santos, IvánSoto-Mardones, LuisSurface oceanic fronts are regions characterized by high biological activity. Here, Sea Surface Temperature (SST) fronts are analyzed for the period 2003–2019 using the Multi-scale Ultra-high Resolution (MUR) SST product in northern Patagonia, a coastal region with high environmental variability through river discharges and coastal upwelling events. SST gradient magnitudes were maximum off Chiloé Island in summer and fall, coherent with the highest frontal probability in the coastal oceanic area, which would correspond to the formation of a coastal upwelling front in the meridional direction. Increased gradient magnitudes in the Inner Sea of Chiloé (ISC) were found primarily in spring and summer. The frontal probability analysis revealed the highest occurrences were confined to the northern area (north of Desertores Islands) and around the southern border of Boca del Guafo. An Empirical Orthogonal Function analysis was performed to clarify the dominant modes of variability in SST gradient magnitudes. The meridional coastal fronts explained the dominant mode (78% of the variance) off Chiloé Island, which dominates in summer, whereas the SST fronts inside the ISC (second mode; 15.8%) were found to dominate in spring and early summer (October–January). Future efforts are suggested focusing on high frontal probability areas to study the vertical structure and variability of the coastal fronts in the ISC and its adjacent coastal ocean. - PublicationA species distribution model of the giant kelp Macrocystis pyrifera: Worldwide changes and a focus on the Southeast Pacific(Wiley, 2024)
; ;Gonzalez‐Aragon, Daniel ;Rivadeneira, Marcelo ;Torres-Pérez, Felipe ;Vásquez, JulioBroitman, BernardoWorldwide climate‐driven shifts in the distribution of species is of special concern when it involves habitat‐forming species. In the coastal environment, large Laminarian algae—kelps—form key coastal ecosystems that support complex and diverse food webs. Among kelps, Macrocystis pyrifera is the most widely distributed habitat‐forming species and provides essential ecosystem services. This study aimed to establish the main drivers of future distributional changes on a global scale and use them to predict future habitat suitability. Using species distribution models (SDM), we examined the changes in global distribution of M. pyrifera under different emission scenarios with a focus on the Southeast Pacific shores. To constrain the drivers of our simulations to the most important factors controlling kelp forest distribution across spatial scales, we explored a suite of environmental variables and validated the predictions derived from the SDMs. Minimum sea surface temperature was the single most important variable explaining the global distribution of suitable habitat for M. pyrifera. Under different climate change scenarios, we always observed a decrease of suitable habitat at low latitudes, while an increase was detected in other regions, mostly at high latitudes. Along the Southeast Pacific, we observed an upper range contraction of −17.08° S of latitude for 2090–2100 under the RCP8.5 scenario, implying a loss of habitat suitability throughout the coast of Peru and poleward to −27.83° S in Chile. Along the area of Northern Chile where a complete habitat loss is predicted by our model, natural stands are under heavy exploitation. The loss of habitat suitability will take place worldwide: Significant impacts on marine biodiversity and ecosystem functioning are likely. Furthermore, changes in habitat suitability are a harbinger of massive impacts in the socio‐ecological systems of the Southeast Pacific. - PublicationSatellite-derived sea surface temperature fronts in a river-influenced coastal upwelling area off central–southern ChileThe variability of thermal fronts in eastern ocean boundaries has received increased attention because of being active regions of vertical fluxes of tracers and biological activity. Sea Surface Temperature (SST) images from three distinct satellite products are used to identify areas with enhanced surface thermal gradients (i.e. SST fronts) in the coastal ocean off central–southern Chile. The main objective is to evaluate their use in the study of SST frontal variability in a river-influenced continental shelf. In contrast with previous studies focused on the mesoscale structure of the upwelling front, this study highlights the importance of using high spatial resolution (i.e. 1 km) satellite products to resolve the small-scale surface thermal gradients on a relatively narrow continental shelf impacted by freshwater river outflows. An improved approach, merging Moderate Resolution Imaging Spectroradiometer (MODIS) imagery from Aqua and Terra satellites (MODIS-AT), increases the percentage of available SST data for the computation of SST gradients and frontal probability over these shelf waters. Overall, SST data from all three sources (Pathfinder, Geostationary Operational Environmental Satellite (GOES), and MODIS) resolve the major mesoscale frontal features along the offshore limit of the continental shelf. However, MODIS-AT considerably improves the detection of SST fronts over the continental shelf, especially during winter and spring when river outflows are important on the dynamics of coastal flows. A case study off the Itata River mouth reveals high spatio-temporal variability of thermal fronts over the continental shelf, which is not well detected from GOES and Pathfinder data. The analysis of MODIS-AT images is highly recommended for studies of thermal fronts over shelf waters. In contrast, the use of GOES imagery improves the monitoring of the mesoscale frontal activity farther offshore.
- PublicationEnvironmental variability and larval supply to wild and cultured shellfish populations(Elsevier, 2022)
; ;Broitman, Bernardo ;Flores, Raúl ;Saldías, Gonzalo ;Piñones, Andrea ;Pinochet, Andre ;Galán-Mejía, AlexanderNavarrete, SergioCoastal upwelling ecosystems support some of the most productive fisheries of the planet together with a large shellfish aquaculture sector that depends on oceanographic processes to deliver planktonic larvae to replenish and feed the farmed stock. Coastal shellfish aquaculture operations in Chile and Perú have experienced large interannual fluctuations in larval supply over the past decade, yet the drivers of such variability remain unidentified. We focused on the effects of environmental variability on larval supply of the farmed Peruvian bay scallop Argopecten purpuratus in a bay in northern Chile (Tongoy Bay, 30∘ S) that accounts for over 90% of countrywide landings. We examined the hypothesis that the environmental processes governing larval supply were shared with wild benthic invertebrates with planktonic larval development and compared time series of larval abundance for the scallop with larval supply rates to benthic populations of two well-studied wild intertidal species: the Chthamalid barnacle Jehlius cirratus and the purple mussel Perumytilus purpuratus. To this end, we examined the cross-correlation of larval supply to environmental variability using MODIS satellite fields of sea surface temperature (SST) chlorophyll-a concentration (chl-a) and fluorescence line height (nFLH), together with three climate indices relevant for the south east Pacific sector: the Southern Oscillation index (SOI), the Pacific Decadal Oscillation (PDO) and the Antarctic Oscillation Index (AAO). Our results showed that over the five-year study period (2009–2013), patterns of larval supply to the scallop population were related to interannual variability in the environmental processes as captured by their Empirical Orthogonal Functions (EOFs), likely to adult condition before spawning. Surprisingly, larval supply for none of the wild species showed a clear association to the EOFs. In contrast, scallops and wild species showed significant association to lower frequency climate variability as captured by the SOI and the PDO, but not the AAO. Results suggest that larval supply patterns to Tongoy Bay may be modulated by regional patterns of climatic variability, particularly of tropical origin. Thus, changes in coastal oceanography associated with ongoing changes in global climate could have strong and lasting effects on the supply of seedstock for wild and cultivated species across this eastern boundary coastal system and argue for the establishment of long-term ocean observing and early warning systems along the region. - PublicationClimatic regulation of vegetation phenology in protected areas along Western South America(MDPI, 2021)
; ;Saldías, Gonzalo S. ;Cazelles, Bernard ;Rivadeneira, Marcelo M. ;Muñoz, Richard ;Galán, Alexander ;Paredes, Álvaro L. ;Fierro, PabloBroitman, Bernardo R.Using 19 years of remotely sensed Enhanced Vegetation Index (EVI), we examined the effects of climatic variability on terrestrial vegetation of six protected areas along southwestern South America, from the semiarid edge of the Atacama desert to southern Patagonia (30∘S–51∘S). The relationship between satellite phenology and climate indices, namely MEI (Multivariate ENSO Index), PDO (Pacific Decadal Oscillation) and SAM (Southern Annular Mode) were established using statistical analyses for non-stationary patterns. The annual mode of phenological activity fluctuated in strength through time from the semiarid region to the border of southern Patagonia. Concomitantly, enhanced synchrony between EVI and climatic oscillations appeared over interannual cycles. Cross correlations revealed that variability in MEI was the lead predictor of EVI fluctuations over scales shorter than 4 months at lower latitudes and for the most poleward study site. The PDO was correlated with EVI over lags longer than 4 months at low latitude sites, while the SAM showed relationships with EVI only for sites located around 40∘S. Our results indicate that the long-term phenological variability of the vegetation within protected areas along southwestern South America is controlled by processes linked to climate indices and that their influence varies latitudinally. Further studies over longer time scales will be needed to improve our understanding the impacts of climate change on vegetation condition and its effect over phenological variability. - PublicationTemporal synchrony in satellite-derived ocean parameters in the inner sea of Chiloe, Northern Patagonia, Chile(Remote Sensing, 2023)
;Muñoz, Richard; ;Arteaga, Johny ;Vásquez, Sebastián ;Saldías, Gonzalo ;Flores, Raúl ;Junyu He ;Broitman, BernardoCazelles , BernardSpatial synchrony occurs when geographically separated time series exhibit correlated temporal variability. Studies of synchrony between different environmental variables within marine ecosystems worldwide have highlighted the extent of system responses to exogenous large-scale forcing. However, these spatial connections remain largely unstudied in marine systems, particularly complex coastlines, where a paucity of field observations precludes the analysis of time series. Here, we used time-frequency analyses based on wavelet and wavelet coherence (WC) analysis to quantify the synchrony (co-variations) between environmental time series derived from MODIS (moderate resolution imaging spectroradiometer) in the topographically complex inner sea of Chiloé (ISC, 41–44°S) for the 2003–2022 period. We find that the strength of the synchrony between chlorophyll a (𝐶ℎ𝑙𝑎) and turbid river plumes (for which we use remote sensing reflectance at 645 nm, 𝑅𝑟𝑠645) varies between the northern and southern areas of the ISC; higher synchrony, measured as the WC between these variables, is observed along the northern basin where water and particle exchanges with the Pacific Ocean are reduced. The WC analysis showed higher synchrony between these variables, with dominant periodicities of 0.5 and 1 year resulting from the hydrological regime of the freshwater input in the area that persisted throughout the 2004–2018 period. Our results suggest that the strong and significant spatial synchrony at the regional scale is likely related to the phases of large-scale climatic oscillations, as inferred through the partial wavelet coherence analysis. Potential mechanisms driving spatial synchrony are discussed in the context of climate and oceanographic regimes in the area. - PublicationArgo float reveals biogeochemical characteristics along the freshwater gradient off Western Patagonia(Frontiers, 2021)
;Galán, Alexander ;Saldías, Gonzalo S. ;Corredor Acosta, Andrea ;Muñoz, Richard; Iriarte, José LuisThe coastal region off Chilean Patagonia has been poorly studied due to the lack of available observations. Here we analyzed, by the very first time, biogeochemical (BGC) data to elucidate the role that biological and physical processes play on nitrate, oxygen, pH and hydrographic variables, along a salinity gradient off central Patagonia. Argo float profiles covering the upper ocean from December 2015 to July 2019 reveal that offshore waters are characterized by low temperatures and high salinities related to high oxygen and medium-high values of pH and nitrate. As the Argo float drifted onshore, freshwater influences the upper 50–100 m with low salinity and high temperature. Waters under the influence of the continental runoff were characterized by medium-to-high oxygen and pH levels, and the lowest nitrate concentrations. Interestingly, oxygen-deficient waters located beneath the freshwater-modified layer showed the lowest pH and highest nitrate. A comprehensive analysis of the temporal and vertical variability of the oxygen:nitrate ratio, in conjunction with biological-related and physical parameters, indicates that the BGC variability seems to be the result of a synergistic interaction between physical and biological processes, where the stratification sets up the environment and promotes the biological response that, in turn, is auto-regulated by modifying the chemical composition in the freshwater-influenced zone. The arrival of future floats with additional sensors (Chlorophyll/Fluorescence, Photosynthetically Active Radiation, Backscatter, etc.) will add new BGC properties that improve our understanding of the coastal marine response to the increasing freshwater input off western Patagonia in the context of climate change.