Research Outputs

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Line-by-line Velocity Measurements: An Outlier-resistant Method for Precision Velocimetry
    (American Astronomical Society, 2022)
    Artigau, Étienne
    ;
    Cadieux, Charles
    ;
    Cook, Neil
    ;
    Doyon, René
    ;
    Vandal, Thomas
    ;
    Donati, Jean-François
    ;
    Moutou, Claire
    ;
    Delfosse, Xavier
    ;
    Fouqué, Pascal
    ;
    Martioli, Eder
    ;
    Bouchy, François
    ;
    Parsons, Jasmine
    ;
    Carmona, Andres
    ;
    Dumusque, Xavier
    ;
    ;
    Bonfils, Xavier
    ;
    Mignon, Lucille
    We present a new algorithm for precision radial velocity (pRV) measurements, a line-by-line (LBL) approach designed to handle outlying spectral information in a simple but efficient manner. The effectiveness of the LBL method is demonstrated on two data sets, one obtained with SPIRou on Barnard’s star, and the other with the High Accuracy Radial velocity Planet Searcher (HARPS) on Proxima Centauri. In the near-infrared, the LBL provides a framework for meters-per-second-level accuracy in pRV measurements despite the challenges associated with telluric absorption and sky emission lines. We confirm with SPIRou measurements spanning 2.7 yr that the candidate super-Earth on a 233 day orbit around Barnard’s star is an artifact due to a combination of time sampling and activity. The LBL analysis of the Proxima Centauri HARPS post-upgrade data alone easily recovers the Proxima b signal and also provides a 2σ detection of the recently confirmed 5 day Proxima d planet, but argues against the presence of the candidate Proximac with a period of 1900 days. We provide evidence that the Proxima c signal is associated with small, unaccounted systematic effects affecting the HARPS-TERRA templatematching radial velocity extraction method for long-period signals. Finally, the LBL framework provides a very 92.1 3.5+ 4.2 effective activity indicator, akin to the FWHM derived from the cross-correlation function, from which we infer a rotation period of days for Proxima.
  • Publication
    A hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS
    (EDP Sciences, 2020) ;
    Cloutier, Ryan
    ;
    Wang, S. X.
    ;
    Teske, J.
    ;
    Brahm, R.
    ;
    Hellier, C.
    ;
    Ricker, G.
    ;
    Vanderspek, R.
    ;
    Latham, D.
    ;
    Seager, S.
    ;
    Winn, J. N.
    ;
    Jenkins, J. M.
    ;
    Collins, Karen A.
    ;
    Stassun, K. G.
    ;
    Ziegler, C.
    ;
    Almenara, José Manuel
    ;
    Anderson, David R.
    ;
    Artigau, Étienne
    ;
    Bonfils, X.
    ;
    Bouchy, F.
    ;
    Briceño, C.
    ;
    Butler, R. P.
    ;
    Charbonneau, D.
    ;
    Conti, Dennis M.
    ;
    Crane, J.
    ;
    Crossfield, Ian J. M.
    ;
    Davies, M.
    ;
    Delfosse, X.
    ;
    Díaz, R. F.
    ;
    Doyon, R.
    ;
    Dragomir, D.
    ;
    Eastman, J. D.
    ;
    Espinoza, N.
    ;
    Essack, Z.
    ;
    Feng, F.
    ;
    Figueira, P.
    ;
    Forveille, T.
    ;
    Gan, T.
    ;
    Glidden, A.
    ;
    Guerrero, N.
    ;
    Hart, R.
    ;
    Henning, Th.
    ;
    Horch, E. P.
    ;
    Isopi, G.
    ;
    Jenkins, J. S.
    ;
    Jordán, A.
    ;
    Kielkopf, J. F.
    ;
    Law, N.
    ;
    Lovis, C.
    ;
    Mallia, F.
    ;
    Mann, A. W.
    ;
    De Medeiros, J. R.
    ;
    Melo, C.
    ;
    Mennickent, R. E.
    ;
    Mignon, L.
    ;
    Murgas. F.
    ;
    Nusdeo, D. A.
    ;
    Pepe, F.
    ;
    Relles, H. M.
    ;
    Rose, M.
    ;
    Santos, N. C.
    ;
    Ségransan, D.
    ;
    Shectman, S.
    ;
    Shporer, A.
    ;
    Smith, J. C.
    ;
    Torres, P.
    ;
    Udry, S.
    ;
    Villaseñor, J.
    ;
    Winters, J. G.
    ;
    Zhou, G.
    We report the detection of a transiting super-Earth-sized planet (R = 1.39 ± 0.09 R⊕) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf (V = 11, K = 7.1) located at 25.15 ± 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan/PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 ± 0.56 M⊕ and thus the bulk density to be 1.74−0.33+0.44 times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission’s scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization.
  • Publication
    A pair of TESS Planets Spanning the radius valley around the Nearby Mid-M Dwarf LTT 3780
    (IOP, 2020)
    Cloutier, Ryan
    ;
    Eastman, Jason D.
    ;
    Rodríguez, Joseph E.
    ;
    ;
    Bonfils, Xavier
    ;
    Mortier, Annelies
    ;
    Watson, Christopher A.
    ;
    Stalport, Manu
    ;
    Pinamonti, Matteo
    ;
    Lienhard, Florian
    ;
    Harutyunyan, Avet
    ;
    Damasso, Mario
    ;
    Latham, David W.
    ;
    Collins, Karen A.
    ;
    Massey, Robert
    ;
    Irwin, Jonathan
    ;
    Winters, Jennifer G.
    ;
    Charbonneau, David
    ;
    Ziegler, Carl
    ;
    Matthews, Elisabeth
    ;
    Crossfield, Ian J. M.
    ;
    Kreidberg, Laura
    ;
    Quinn, Samuel N.
    ;
    Ricker, George
    ;
    Vanderspek, Roland
    ;
    Seager, Sara
    ;
    Winn, Joshua
    ;
    Jenkins, Jon M.
    ;
    Vezie, Michael
    ;
    Udry, Stéphane
    ;
    Twicken, Joseph D.
    ;
    Tenenbaum, Peter
    ;
    Sozzetti, Alessandro
    ;
    Ségransan, Damien
    ;
    Schlieder, Joshua E.
    ;
    Sasselov, Dimitar
    ;
    Santos, Nuno C.
    ;
    Rice, Ken
    ;
    Rackham, Benjamin V.
    ;
    Poretti, Ennio
    ;
    Piotto, Giampaolo
    ;
    Phillips, David
    ;
    Pepe, Francesco
    ;
    Molinari, Emilio
    ;
    Mignon, Lucile
    ;
    Micela, Giuseppina
    ;
    Melo, Claudio
    ;
    De Medeiros, José R.
    ;
    Mayor, Michel
    ;
    Matson, Rachel A.
    ;
    Martínez Fiorenzano, Aldo F.
    ;
    Mann, Andrew W.
    ;
    Magazzú, Antonio
    ;
    Lovis, Christophe
    ;
    López-Morales, Mercedes
    ;
    López, Eric
    ;
    Lissauer, Jack J.
    ;
    Lépine, Sébastien
    ;
    Law, Nicholas
    ;
    Kielkopf, John F.
    ;
    Johnson, John A.
    ;
    Jensen, Eric L. N.
    ;
    Howell, Steve B.
    ;
    Gonzáles, Erica
    ;
    Ghedina, Adriano
    ;
    Forveille, Thierry
    ;
    Figueira, Pedro
    ;
    Dumusque, Xavier
    ;
    Dressing, Courtney D.
    ;
    Doyon, René
    ;
    Díaz, Rodrigo F.
    ;
    Di Fabrizio, Luca
    ;
    Delfosse, Xavier
    ;
    Cosentino, Rosario
    ;
    Conti, Dennis M.
    ;
    Collins, Kevin I.
    ;
    Collier Cameron, Andrew
    ;
    Ciardi, David
    ;
    Caldwell, Douglas A.
    ;
    Burke, Christopher
    ;
    Buchhave, Lars
    ;
    Briceño, César
    ;
    Boyd, Patricia
    ;
    Bouchy, François
    ;
    Beichman, Charles
    ;
    Artigau, Étienne
    ;
    Almenara, José Manuel
    We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V = 13.07, Ks = 8.204, Rs = 0.374 R⊙, Ms = 0.401 M⊙, d = 22 pc). The two planet candidates are identified in a single Transiting Exoplanet Survey Satellite sector and validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of Pb = 0.77, Pc = 12.25 days and sizes rp,b = 1.33 ± 0.07, rp,c = 2.30 ± 0.16 R⊕, the two planets span the radius valley in period–radius space around low-mass stars, thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial velocity measurements from the High Accuracy Radial velocity Planet Searcher (HARPS) and HARPS-N, we measure planet masses of ${m}_{p,b}={2.62}_{-0.46}^{+0.48}$ and ${m}_{p,c}={8.6}_{-1.3}^{+1.6}$ M⊕, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and core-powered mass-loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley.