Options
Dr. Astudillo-Defru, Nicola
Nombre de publicación
Dr. Astudillo-Defru, Nicola
Nombre completo
Astudillo Defru, Nicola
Facultad
Email
nastudillo@ucsc.cl
ORCID
5 results
Research Outputs
Now showing 1 - 5 of 5
- PublicationThe SOPHIE search for northern extrasolar planets. XVII. A wealth of new objects: Six cool Jupiters, three brown dwarfs, and 16 low-mass binary stars(EDP Sciences, 2021)
; ;Dalal, S. ;Kiefer, F. ;Hébrard, G. ;Sahlmann, J. ;Sousa, S. ;Forveille, T. ;Delfosse, X. ;Arnold, L. ;Bonfils, X. ;Boisse, I. ;Bouchy, F. ;Bourrier, V. ;Brugger, B. ;Cortés-Zuleta, P. ;Deleuil, M. ;Demangeon, O. ;Díaz, R. ;Hara, N. ;Heidari, N. ;Hobson, J. ;Lopez, T. ;Lovis, C. ;Martioli, E. ;Mignon, L. ;Mousis, O. ;Moutou, C. ;Rey, J. ;Santerne, A. ;Santos, N. ;Ségransan, D. ;Strøm, P.Udry, S.Distinguishing classes within substellar objects and understanding their formation and evolution need larger samples of substellar companions such as exoplanets, brown dwarfs, and low-mass stars. In this paper, we look for substellar companions using radial velocity surveys of FGK stars with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We assign here the radial velocity variations of 27 stars to their orbital motion induced by low-mass companions. We also constrained their plane-of-the-sky motion using HIPPARCOS and Gaia Data Release 1 measurements, which constrain the true masses of some of these companions. We report the detection and characterization of six cool Jupiters, three brown dwarf candidates, and 16 low-mass stellar companions. We additionally update the orbital parameters of the low-mass star HD 8291 B, and we conclude that the radial velocity variations of HD 204277 are likely due to stellar activity despite resembling the signal of a giant planet. One of the new giant planets, BD+631405 b, adds to the population of highly eccentric cool Jupiters, and it is presently the most massive member. Two of the cool Jupiter systems also exhibit signatures of an additional outer companion. The orbital periods of the new companions span 30 days to 11.5 yr, their masses 0.72 MJ–0.61 M, and their eccentricities 0.04–0.88. These discoveries probe the diversity of substellar objects and low-mass stars, which will help constrain the models of their formation and evolution. - PublicationThe SOPHIE search for northern extrasolar planets. XVIII. Six new cold Jupiters, including one of the most eccentric exoplanet orbits(EDP Sciences, 2021)
; ;Demangeon, O. ;Dalal, S. ;Hébrard, G. ;Nsamba, B. ;Kiefer, F. ;Camacho, J. D. ;Sahlmann, J. ;Arnold, L. ;Bonfils, X. ;Boisse, I. ;Bouchy, F. ;Bourrier, V. ;Campante, T. ;Delfosse, X. ;Deleuil, M. ;Díaz, R. F. ;Faria, J. ;Forveille, T. ;Hara, N. ;Heidari, N. ;Hobson, M. ;Lopez, T. ;Moutou, C. ;Rey, J. ;Santerne, A. ;Sousa, S. ;Santos, N. ;Strøm, P. ;Tsantaki, M.Udry, S.Context. Due to their low transit probability, the long-period planets are, as a population, only partially probed by transit surveys. Radial velocity surveys thus have a key role to play, in particular for giant planets. Cold Jupiters induce a typical radial velocity semi-amplitude of 10 m s−1, which is well within the reach of multiple instruments that have now been in operation for more than a decade. Aims. We take advantage of the ongoing radial velocity survey with the SOPHIEhigh-resolution spectrograph, which continues the search started by its predecessor ELODIEto further characterize the cold Jupiter population.Methods.Analyzing the radial velocity data from six bright solar-like stars taken over a period of up to 15 yr, we attempt the detection and confirmation of Keplerian signals. Results. We announce the discovery of six planets, one per system, with minimum masses in the range 4.8–8.3Mjupand orbital periods between 200 days and 10 yr. The data do not provide enough evidence to support the presence of additional planets in any of these systems. The analysis of stellar activity indicators confirms the planetary nature of the detected signals. Conclusions. These six planets belong to the cold and massive Jupiter population, and four of them populate its eccentric tail. In this respect, HD 80869 b stands out as having one of the most eccentric orbits, with an eccentricity of 0.862−0.018+0.028. These planets can thus help to better constrain the migration and evolution processes at play in the gas giant population. Furthermore, recent works presenting the correlation between small planets and cold Jupiters indicate that these systems are good candidates to search for small inner planets. - PublicationThe SOPHIE search for northern extrasolar planets XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain(EDP Sciences, 2020)
;Hara, N. C. ;Bouchy, F. ;Stalport, M. ;Boisse, I. ;Rodrigues, J. ;Delisle, J.-B. ;Santerne, A. ;Henry, G. W. ;Arnold, L.; ;Borgniet, S. ;Bonfils, X. ;Bourrier, V. ;Brugger, B. ;Courcol, B. ;Dalal, S. ;Deleuil, M. ;Delfosse, X. ;Demangeon, O. ;Díaz, R. F. ;Dumusque, X. ;Forveille, T. ;Hébrard, G. ;Hobson, M. J. ;Kiefer, F. ;López, T. ;Mignon, L. ;Mousis, O. ;Moutou, C. ;Pepe, F. ;Rey, J. ;Santos, N. C. ;Ségransan, D. ;Udry, S.Wilson, P. A.Aims. Since 2011, the SOPHIE spectrograph has been used to search for Neptunes and super-Earths in the northern hemisphere. As part of this observational program, 290 radial velocity measurements of the 6.4 V magnitude star HD 158259 were obtained. Additionally, TESS photometric measurements of this target are available. We present an analysis of the SOPHIE data and compare our results with the output of the TESS pipeline. Methods. The radial velocity data, ancillary spectroscopic indices, and ground-based photometric measurements were analyzed with classical and ℓ1 periodograms. The stellar activity was modeled as a correlated Gaussian noise and its impact on the planet detection was measured with a new technique. Results. The SOPHIE data support the detection of five planets, each with m sin i ≈ 6 M⊕, orbiting HD 158259 in 3.4, 5.2, 7.9, 12, and 17.4 days. Though a planetary origin is strongly favored, the 17.4 d signal is classified as a planet candidate due to a slightly lower statistical significance and to its proximity to the expected stellar rotation period. The data also present low frequency variations, most likely originating from a magnetic cycle and instrument systematics. Furthermore, the TESS pipeline reports a significant signal at 2.17 days corresponding to a planet of radius ≈1.2 R⊕. A compatible signal is seen in the radial velocities, which confirms the detection of an additional planet and yields a ≈2 M⊕ mass estimate. Conclusions. We find a system of five planets and a strong candidate near a 3:2 mean motion resonance chain orbiting HD 158259. The planets are found to be outside of the two and three body resonances. - PublicationDetection and characterisation of 54 massive companions with the SOPHIE spectrograph Seven new brown dwarfs and constraints on the brown dwarf desert(Astronomy & Astrophysics, 2019)
;Kiefer, F. ;Hébrard, G. ;Sahlmann, J. ;Sousa, S. G. ;Forveille, T. ;Santos, N. ;Mayor, M. ;Deleuil, M. ;Wilson, P. A. ;Dalal, S. ;Díaz, R. F. ;Henry, G. W. ;Hagelberg, J. ;Hobson, M. J. ;Demangeon, O. ;Bourrier, V. ;Delfosse, X. ;Arnold, L.; ;Beuzit, J. L. ;Boisse, I. ;Bonfils, X. ;Borgniet, S. ;Bouchy, F. ;Courcol, B. ;Ehrenreich, D. ;Hara, N. ;Lagrange, A. M. ;Lovis, C. ;Montagnier, G. ;Moutou, C. ;Pepe, F. ;Perrier, C. ;Rey, J. ;Santerne, A. ;Ségransan, D. ;Udry, S.Vidal-Madjar, A.Brown dwarfs (BD) are substellar objects intermediate between planets and stars with masses of ∼13–80 MJ. While isolated BDs are most likely produced by gravitational collapse in molecular clouds down to masses of a few MJ , a non-negligible fraction of low-mass companions might be formed through the planet-formation channel in protoplanetary discs. The upper mass limit of objects formed within discs is still observationally unknown, the main reason being the strong dearth of BD companions at orbital periods shorter than 10 yr, also known as the BD desert. Aims. To address this question, we aim at determining the best statistics of companions within the 10–100 MJ mass regime and located closer than ∼10 au to the primary star, while minimising observation and selection bias. Methods. We made extensive use of the radial velocity (RV) surveys of northern hemisphere FGK stars within 60 pc of the Sun, performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We derived the Keplerian solutions of the RV variations of 54 sources. Public astrometric data of the HIPPARCOS and Gaia missions allowed us to constrain the masses of the companions for most sources. We introduce GASTON, a new method to derive inclination combining RVs and Keplerian and astrometric excess noise from Gaia DR1. Results. We report the discovery of 12 new BD candidates. For five of them, additional astrometric data led to a revision of their mass in the M-dwarf regime. Among the seven remaining objects, four are confirmed BD companions, and three others are likely also in this mass regime. Moreover, we report the detection of 42 M-dwarfs within the range of 90 MJ–0.52 M . The resulting M sin i-P distribution of BD candidates shows a clear drop in the detection rate below 80-day orbital period. Above that limit, the BD desert appears rather wet, with a uniform distribution of the M sin i. We derive a minimum BD-detection frequency around Solar-like stars of 2.0 ± 0.5%. - PublicationThe SOPHIE search for northern extrasolar planets. XIX. A system including a cold sub-Neptune potentially transiting a V = 6.5 star HD 88986(EDP Sciences, 2024)
; ;Heidari, N. ;Boisse, I. ;Hara, N. ;Wilson, T. ;Kiefer, F. ;Hébrard, G. ;Philipot, F. ;Hoyer, S. ;Stassun, K. ;Henry, G. ;Santos, N. ;Acuña, L. ;Almasian, D. ;Arnold, L. ;Attia, O. ;Bonfils, X. ;Bouchy, F. ;Bourrier, V. ;Collet, B. ;Cortés-Zuleta, P. ;Carmona, A. ;Delfosse, X. ;Dalal, S. ;Deleuil, M. ;Demangeon, O. ;Díaz, R. ;Dumusque, X. ;Ehrenreich, D. ;Forveille, T. ;Hobson, M. ;Jenkins, J. ;Jenkins, J. ;Lagrange, A. ;Latham, D. ;Larue, P. ;Liu, J. ;Moutou, C. ;Mignon, L. ;Osborn, H. ;Pepe, F. ;Rapetti, D. ;Rodrigues, J. ;Santerne, A. ;Segransan, D. ;Shporer, A. ;Sulis, S. ;Torres, G. ;Udry, S. ;Vakili, F. ;Vanderburg, A. ;Venot, O. ;Vivien, H.Vines, J.Transiting planets with orbital periods longer than 40 d are extremely rare among the 5000+ planets discovered so far. The lack of discoveries of this population poses a challenge to research into planetary demographics, formation, and evolution. Here, we present the detection and characterization of HD 88986 b, a potentially transiting sub-Neptune, possessing the longest orbital period among known transiting small planets (<4 R⊕) with a precise mass measurement (σM/M > 25%). Additionally, we identified the presence of a massive companion in a wider orbit around HD 88986. To validate this discovery, we used a combination of more than 25 yr of extensive radial velocity (RV) measurements (441 SOPHIE data points, 31 ELODIE data points, and 34 HIRES data points), Gaia DR3 data, 21 yr of photometric observations with the automatic photoelectric telescope (APT), two sectors of TESS data, and a 7-day observation of CHEOPS. Our analysis reveals that HD 88986 b, based on two potential single transits on sector 21 and sector 48 which are both consistent with the predicted transit time from the RV model, is potentially transiting. The joint analysis of RV and photometric data show that HD 88986 b has a radius of 2.49 ± 0.18 R⊕, a mass of 17.2−3.8+4.0 M⊕, and it orbits every 146.05−0.40+0.43 d around a subgiant HD 88986 which is one of the closest and brightest exoplanet host stars (G2Vtype, R = 1.543 ± 0.065 R⊙, V = 6.47 ± 0.01 mag, distance = 33.37 ± 0.04 pc). The nature of the outer, massive companion is still to be confirmed; a joint analysis of RVs, HIPPARCOS, and Gaia astrometric data shows that with a 3σ confidence interval, its semi-major axis is between 16.7 and 38.8 au and its mass is between 68 and 284 MJup. HD 88986 b’s wide orbit suggests the planet did not undergo significant mass loss due to extreme-ultraviolet radiation from its host star. Therefore, it probably maintained its primordial composition, allowing us to probe its formation scenario. Furthermore, the cold nature of HD 88986 b (460 ± 8 K), thanks to its long orbital period, will open up exciting opportunities for future studies of cold atmosphere composition characterization. Moreover, the existence of a massive companion alongside HD 88986 b makes this system an interesting case study for understanding planetary formation and evolution.