Options
Dr. Astudillo-Defru, Nicola
Nombre de publicaciĂ³n
Dr. Astudillo-Defru, Nicola
Nombre completo
Astudillo Defru, Nicola
Facultad
Email
nastudillo@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationHD 207897 b: A dense sub-Neptune transiting a nearby and bright K-type star(Astronomy & Astrophysics, 2022)
;Heidari, N. ;Boisse, I. ;Orell-Miquel, J. ;HĂ©brard, G. ;Acuña, L. ;Hara, N. C. ;Lillo-Box, J. ;Eastman, J. D. ;Arnold, L.; ;Adibekyan, V. ;Bieryla, A. ;Bonfils, X. ;Bouchy, F. ;Barclay, T. ;Brasseur, C. E. ;Borgniet, S. ;Bourrier, V.Buchhave, L.We present the discovery and characterization of a transiting sub-Neptune that orbits the nearby (28 pc) and bright (V = 8.37) K0V star HD 207897 (TOI-1611) with a 16.20-day period. This discovery is based on photometric measurements from the Transiting Exoplanet Survey Satellite mission and radial velocity (RV) observations from the SOPHIE, Automated Planet Finder, and HIRES high-precision spectrographs. We used EXOFASTv2 to model the parameters of the planet and its host star simultaneously, combining photometric and RV data to determine the planetary system parameters. We show that the planet has a radius of 2.50 ± 0.08 RE and a mass of either14.4 ± 1.6 ME or 15.9 ± 1.6 ME with nearly equal probability. The two solutions correspond to two possibilities for the stellar activity period. The density accordingly is either 5.1 ± 0.7 g cm−3 or 5.5+0.8−0.7 g cm−3, making it one of the relatively rare dense sub-Neptunes. The existence of this dense planet at only 0.12 AU from its host star is unusual in the currently observed sub-Neptune (2 < RE < 4) population. The most likely scenario is that this planet has migrated to its current position. - PublicationDetailed stellar activity analysis and modelling of GJ 832. Reassessment of the putative habitable zone planet GJ 832c(Astronomy & Astrophysics, 2022)
;Gorrini, P.; ;Dreizler, S. ;Damasso, M. ;DĂaz, R. F. ;Bonfils, X. ;Jeffers, S. V. ;Barnes, J. R. ;Del Sordo, F. ;Almenara, J.-M. ;Artigau, E. ;Bouchy, F. ;Charbonneau, D. ;Delfosse, X. ;Doyon, R. ;Figueira, P. ;Forveille, T. ;Haswell, C. A. ;LĂ³pez-GonzĂ¡lez, M. J. ;Melo, C. ;Mennickent, R. E. ;GaisnĂ©, G. ;Morales, N. ;Murgas, F. ;Pepe, F. ;RodrĂguez, E. ;Santos, N. C. ;Tal-Or, L. ;Tsapras, Y.Udry, S.Context. Gliese-832 (GJ 832) is an M2V star hosting a massive planet on a decade-long orbit, GJ 832b, discovered by radial velocity (RV). Later, a super Earth or mini-Neptune orbiting within the stellar habitable zone was reported (GJ 832c). The recently determined stellar rotation period (45.7±9.3 days) is close to the orbital period of putative planet c (35.68±0.03 days). Aims. Weaimtoconfirmor dismiss the planetary nature of the RV signature attributed to GJ 832c, by adding 119 new RV data points, new photometric data, and an analysis of the spectroscopic stellar activity indicators. Additionally, we update the orbital parameters of the planetary system and search for additional signals. Methods. We performed a frequency content analysis of the RVs to search for periodic and stable signals. Radial velocity time series were modelled with Keplerians and Gaussian process (GP) regressions alongside activity indicators to subsequently compare them within a Bayesian framework. Results. We updated the stellar rotational period of GJ 832 from activity indicators, obtaining 37.5 +1.4 −1.5 days, improving the precision by a factor of 6. The new photometric data are in agreement with this value. We detected an RV signal near 18 days (FAP < 4.6%), which is half of the stellar rotation period. Two Keplerians alone fail at modelling GJ 832b and a second planet with a 35-day orbital period. Moreover, the Bayesian evidence from the GP analysis of the RV data with simultaneous activity indices prefers a model without a second Keplerian, therefore negating the existence of planet c.