Options
Dr. Astudillo-Defru, Nicola
Nombre de publicación
Dr. Astudillo-Defru, Nicola
Nombre completo
Astudillo Defru, Nicola
Facultad
Email
nastudillo@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationA hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS(EDP Sciences, 2020)
; ;Cloutier, Ryan ;Wang, S. X. ;Teske, J. ;Brahm, R. ;Hellier, C. ;Ricker, G. ;Vanderspek, R. ;Latham, D. ;Seager, S. ;Winn, J. N. ;Jenkins, J. M. ;Collins, Karen A. ;Stassun, K. G. ;Ziegler, C. ;Almenara, José Manuel ;Anderson, David R. ;Artigau, Étienne ;Bonfils, X. ;Bouchy, F. ;Briceño, C. ;Butler, R. P. ;Charbonneau, D. ;Conti, Dennis M. ;Crane, J. ;Crossfield, Ian J. M. ;Davies, M. ;Delfosse, X. ;Díaz, R. F. ;Doyon, R. ;Dragomir, D. ;Eastman, J. D. ;Espinoza, N. ;Essack, Z. ;Feng, F. ;Figueira, P. ;Forveille, T. ;Gan, T. ;Glidden, A. ;Guerrero, N. ;Hart, R. ;Henning, Th. ;Horch, E. P. ;Isopi, G. ;Jenkins, J. S. ;Jordán, A. ;Kielkopf, J. F. ;Law, N. ;Lovis, C. ;Mallia, F. ;Mann, A. W. ;De Medeiros, J. R. ;Melo, C. ;Mennickent, R. E. ;Mignon, L. ;Murgas. F. ;Nusdeo, D. A. ;Pepe, F. ;Relles, H. M. ;Rose, M. ;Santos, N. C. ;Ségransan, D. ;Shectman, S. ;Shporer, A. ;Smith, J. C. ;Torres, P. ;Udry, S. ;Villaseñor, J. ;Winters, J. G.Zhou, G.We report the detection of a transiting super-Earth-sized planet (R = 1.39 ± 0.09 R⊕) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf (V = 11, K = 7.1) located at 25.15 ± 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan/PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 ± 0.56 M⊕ and thus the bulk density to be 1.74−0.33+0.44 times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission’s scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization. - PublicationThe SOPHIE search for northern extrasolar planets XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain(EDP Sciences, 2020)
;Hara, N. C. ;Bouchy, F. ;Stalport, M. ;Boisse, I. ;Rodrigues, J. ;Delisle, J.-B. ;Santerne, A. ;Henry, G. W. ;Arnold, L.; ;Borgniet, S. ;Bonfils, X. ;Bourrier, V. ;Brugger, B. ;Courcol, B. ;Dalal, S. ;Deleuil, M. ;Delfosse, X. ;Demangeon, O. ;Díaz, R. F. ;Dumusque, X. ;Forveille, T. ;Hébrard, G. ;Hobson, M. J. ;Kiefer, F. ;López, T. ;Mignon, L. ;Mousis, O. ;Moutou, C. ;Pepe, F. ;Rey, J. ;Santos, N. C. ;Ségransan, D. ;Udry, S.Wilson, P. A.Aims. Since 2011, the SOPHIE spectrograph has been used to search for Neptunes and super-Earths in the northern hemisphere. As part of this observational program, 290 radial velocity measurements of the 6.4 V magnitude star HD 158259 were obtained. Additionally, TESS photometric measurements of this target are available. We present an analysis of the SOPHIE data and compare our results with the output of the TESS pipeline. Methods. The radial velocity data, ancillary spectroscopic indices, and ground-based photometric measurements were analyzed with classical and ℓ1 periodograms. The stellar activity was modeled as a correlated Gaussian noise and its impact on the planet detection was measured with a new technique. Results. The SOPHIE data support the detection of five planets, each with m sin i ≈ 6 M⊕, orbiting HD 158259 in 3.4, 5.2, 7.9, 12, and 17.4 days. Though a planetary origin is strongly favored, the 17.4 d signal is classified as a planet candidate due to a slightly lower statistical significance and to its proximity to the expected stellar rotation period. The data also present low frequency variations, most likely originating from a magnetic cycle and instrument systematics. Furthermore, the TESS pipeline reports a significant signal at 2.17 days corresponding to a planet of radius ≈1.2 R⊕. A compatible signal is seen in the radial velocities, which confirms the detection of an additional planet and yields a ≈2 M⊕ mass estimate. Conclusions. We find a system of five planets and a strong candidate near a 3:2 mean motion resonance chain orbiting HD 158259. The planets are found to be outside of the two and three body resonances. - PublicationCharacterization of the L 98-59 multi-planetary system with HARPS Mass characterization of a hot super-Earth, a sub-Neptune, and a mass upper limit on the third planet(Astronomy & Astrophysics, 2019)
;Cloutier, Ryan; ;Bonfils, X. ;Jenkins, J.S. ;Berdiñas, Z. ;Ricker, G. ;Vanderspek, R. ;Latham, D. W. ;Seager, S. ;Winn, J. ;Jenkins, J. M. ;Almenara, José Manuel ;Bouchy, F. ;Delfosse, X. ;Díaz, M. R. ;Díaz, R. F. ;Doyon, R. ;Figueira, P. ;Forveille, T. ;Kurtovic, N. T. ;Lovis, C. ;Mayor, M. ;Menou, K. ;Morgan, E. ;Morris, R. ;Muirhead, P. ;Murgas, F. ;Pepe, F. ;Santos, N. C. ;Ségransan, D. ;Smith, J. C. ;Tenenbaum, P. ;Torres, G. ;Udry, S. ;Vezie, M.Villasenor, J.Aims. L 98-59 (TIC 307210830, TOI-175) is a nearby M3 dwarf around which TESS revealed three small transiting planets (0.80, 1.35, 1.57 Earth radii) in a compact configuration with orbital periods shorter than 7.5 days. Here we aim to measure the masses of the known transiting planets in this system using precise radial velocity (RV) measurements taken with the HARPS spectrograph. Methods. We considered both trained and untrained Gaussian process regression models of stellar activity, which are modeled simultaneously with the planetary signals. Our RV analysis was then supplemented with dynamical simulations to provide strong constraints on the planets’ orbital eccentricities by requiring long-term stability. Results. We measure the planet masses of the two outermost planets to be 2.42 ± 0.35 and 2.31 ± 0.46 Earth masses, which confirms the bulk terrestrial composition of the former and eludes to a significant radius fraction in an extended gaseous envelope for the latter. We are able to place an upper limit on the mass of the smallest, innermost planet of <1.01 Earth masses with 95% confidence. Our RV plus dynamical stability analysis places strong constraints on the orbital eccentricities and reveals that each planet’s orbit likely has e < 0.1. Conclusions. L 98-59 is likely a compact system of two rocky planets plus a third outer planet with a lower bulk density possibly indicative of the planet having retained a modest atmosphere. The system offers a unique laboratory for studies of planet formation, dynamical stability, and comparative atmospheric planetology as the two outer planets are attractive targets for atmospheric characterization through transmission spectroscopy. Continued RV monitoring will help refine the characterization of the innermost planet andpotentially reveal additional planets in the system at wider separations.