Research Outputs

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    The SOPHIE search for northern extrasolar planets. XVII. A wealth of new objects: Six cool Jupiters, three brown dwarfs, and 16 low-mass binary stars
    (EDP Sciences, 2021) ;
    Dalal, S.
    ;
    Kiefer, F.
    ;
    Hébrard, G.
    ;
    Sahlmann, J.
    ;
    Sousa, S.
    ;
    Forveille, T.
    ;
    Delfosse, X.
    ;
    Arnold, L.
    ;
    Bonfils, X.
    ;
    Boisse, I.
    ;
    Bouchy, F.
    ;
    Bourrier, V.
    ;
    Brugger, B.
    ;
    Cortés-Zuleta, P.
    ;
    Deleuil, M.
    ;
    Demangeon, O.
    ;
    Díaz, R.
    ;
    Hara, N.
    ;
    Heidari, N.
    ;
    Hobson, J.
    ;
    Lopez, T.
    ;
    Lovis, C.
    ;
    Martioli, E.
    ;
    Mignon, L.
    ;
    Mousis, O.
    ;
    Moutou, C.
    ;
    Rey, J.
    ;
    Santerne, A.
    ;
    Santos, N.
    ;
    Ségransan, D.
    ;
    Strøm, P.
    ;
    Udry, S.
    Distinguishing classes within substellar objects and understanding their formation and evolution need larger samples of substellar companions such as exoplanets, brown dwarfs, and low-mass stars. In this paper, we look for substellar companions using radial velocity surveys of FGK stars with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We assign here the radial velocity variations of 27 stars to their orbital motion induced by low-mass companions. We also constrained their plane-of-the-sky motion using HIPPARCOS and Gaia Data Release 1 measurements, which constrain the true masses of some of these companions. We report the detection and characterization of six cool Jupiters, three brown dwarf candidates, and 16 low-mass stellar companions. We additionally update the orbital parameters of the low-mass star HD 8291 B, and we conclude that the radial velocity variations of HD 204277 are likely due to stellar activity despite resembling the signal of a giant planet. One of the new giant planets, BD+631405 b, adds to the population of highly eccentric cool Jupiters, and it is presently the most massive member. Two of the cool Jupiter systems also exhibit signatures of an additional outer companion. The orbital periods of the new companions span 30 days to 11.5 yr, their masses 0.72 MJ–0.61 M, and their eccentricities 0.04–0.88. These discoveries probe the diversity of substellar objects and low-mass stars, which will help constrain the models of their formation and evolution.
  • Publication
    Optical phase curve of the ultra-hot Jupiter WASP-121b
    (EDP Sciences, 2020)
    Bourrier, V.
    ;
    Kitzmann, D.
    ;
    Kuntzer, T.
    ;
    Nascimbeni, V.
    ;
    Lendl, M.
    ;
    Lavie, B.
    ;
    Hoeijmakers, H. J.
    ;
    Pino, L.
    ;
    Ehrenreich, D.
    ;
    Heng, K.
    ;
    Allart, R.
    ;
    Cegla, H. M.
    ;
    Dumusque, X.
    ;
    Melo, C.
    ;
    ;
    Caldwell, Douglas A.
    ;
    Cretignier, M.
    ;
    Giles, H.
    ;
    Henze, C. E.
    ;
    Jenkins, J.
    ;
    Lovis, C.
    ;
    Murgas, F.
    ;
    Pepe, F.
    ;
    Ricker, G. R.
    ;
    Rose, M. E.
    ;
    Seager, S.
    ;
    Segransan, D.
    ;
    Suárez-Mascareño, A.
    ;
    Udry, S.
    ;
    Vanderspek, R.
    ;
    Wyttenbach, A.
    We present the analysis of TESS optical photometry of WASP-121b, which reveals the phase curve of this transiting ultra-hot Jupiter. Its hotspot is located at the sub-stellar point, showing inefficient heat transport from the dayside (2870 ± 50 K) to the nightside (<2500 K at 3σ) at the altitudes probed by TESS. The TESS eclipse depth, measured at the shortest wavelength to date for WASP-121b, confirms the strong deviation from blackbody planetary emission. Our atmospheric retrieval on the complete emission spectrum supports the presence of a temperature inversion, which can be explained by the presence of VO and possibly TiO and FeH. The strong planetary emission at short wavelengths could arise from an H− continuum.
  • Thumbnail Image
    Publication
    Characterisation of stellar activity of M dwarfs I. Long-timescale variability in a large sample and detection of new cycles
    (EDP Sciences, 2023)
    Mignon, L.
    ;
    Meunier, N.
    ;
    Delfosse, X.
    ;
    Bonfils, X.
    ;
    Santos, N.
    ;
    Forveille, T.
    ;
    Gaisné, G.
    ;
    ;
    Lovis, C.
    ;
    Udry, S.
    Context. M dwarfs are active stars that exhibit variability in chromospheric emission and photometry at short and long timescales, including long cycles that are related to dynamo processes. This activity also impacts the search for exoplanets because it affects the radial velocities. Aims. We analysed a large sample of 177 M dwarfs observed with HARPS during the period 2003–2020 in order to characterise the long-term variability of these stars. We compared the variability obtained in three chromospheric activity indices (Ca II H & K, the Na D doublet, and Hα) and with ASAS photometry. Methods. We focused on the detailed analysis of the chromospheric emission based on linear, quadratic, and sinusoidal models. We used various tools to estimate the significance of the variability and to quantify the improvement brought by the models. In addition, we analysed complementary photometric time series for the most variable stars to be able to provide a broader view of the long-term variability in M dwarfs. Results. We find that most stars are significantly variable, even the quietest stars. Most stars in our sample (75%) exhibit a long-term variability, which manifests itself mostly through linear or quadratic variability, although the true behaviour may be more complex. We found significant variability with estimated timescales for 24 stars, and estimated the lower limit for a possible cycle period for an additional 9 stars that were not previously published. We found evidence of complex variability because more than one long-term timescale may be present for at least 12 stars, together with significant differences between the behaviour of the three activity indices. This complexity may also be the source of the discrepancies observed between previous publications. Conclusions. We conclude that long-term variability is present for all spectral types and activity level in M dwarfs, without a significant trend with spectral type or mean activity level.
  • Publication
    A hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS
    (EDP Sciences, 2020) ;
    Cloutier, Ryan
    ;
    Wang, S. X.
    ;
    Teske, J.
    ;
    Brahm, R.
    ;
    Hellier, C.
    ;
    Ricker, G.
    ;
    Vanderspek, R.
    ;
    Latham, D.
    ;
    Seager, S.
    ;
    Winn, J. N.
    ;
    Jenkins, J. M.
    ;
    Collins, Karen A.
    ;
    Stassun, K. G.
    ;
    Ziegler, C.
    ;
    Almenara, José Manuel
    ;
    Anderson, David R.
    ;
    Artigau, Étienne
    ;
    Bonfils, X.
    ;
    Bouchy, F.
    ;
    Briceño, C.
    ;
    Butler, R. P.
    ;
    Charbonneau, D.
    ;
    Conti, Dennis M.
    ;
    Crane, J.
    ;
    Crossfield, Ian J. M.
    ;
    Davies, M.
    ;
    Delfosse, X.
    ;
    Díaz, R. F.
    ;
    Doyon, R.
    ;
    Dragomir, D.
    ;
    Eastman, J. D.
    ;
    Espinoza, N.
    ;
    Essack, Z.
    ;
    Feng, F.
    ;
    Figueira, P.
    ;
    Forveille, T.
    ;
    Gan, T.
    ;
    Glidden, A.
    ;
    Guerrero, N.
    ;
    Hart, R.
    ;
    Henning, Th.
    ;
    Horch, E. P.
    ;
    Isopi, G.
    ;
    Jenkins, J. S.
    ;
    Jordán, A.
    ;
    Kielkopf, J. F.
    ;
    Law, N.
    ;
    Lovis, C.
    ;
    Mallia, F.
    ;
    Mann, A. W.
    ;
    De Medeiros, J. R.
    ;
    Melo, C.
    ;
    Mennickent, R. E.
    ;
    Mignon, L.
    ;
    Murgas. F.
    ;
    Nusdeo, D. A.
    ;
    Pepe, F.
    ;
    Relles, H. M.
    ;
    Rose, M.
    ;
    Santos, N. C.
    ;
    Ségransan, D.
    ;
    Shectman, S.
    ;
    Shporer, A.
    ;
    Smith, J. C.
    ;
    Torres, P.
    ;
    Udry, S.
    ;
    Villaseñor, J.
    ;
    Winters, J. G.
    ;
    Zhou, G.
    We report the detection of a transiting super-Earth-sized planet (R = 1.39 ± 0.09 R⊕) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf (V = 11, K = 7.1) located at 25.15 ± 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan/PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 ± 0.56 M⊕ and thus the bulk density to be 1.74−0.33+0.44 times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission’s scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization.
  • Publication
    Characterization of the L 98-59 multi-planetary system with HARPS Mass characterization of a hot super-Earth, a sub-Neptune, and a mass upper limit on the third planet
    (Astronomy & Astrophysics, 2019)
    Cloutier, Ryan
    ;
    ;
    Bonfils, X.
    ;
    Jenkins, J.S.
    ;
    Berdiñas, Z.
    ;
    Ricker, G.
    ;
    Vanderspek, R.
    ;
    Latham, D. W.
    ;
    Seager, S.
    ;
    Winn, J.
    ;
    Jenkins, J. M.
    ;
    Almenara, José Manuel
    ;
    Bouchy, F.
    ;
    Delfosse, X.
    ;
    Díaz, M. R.
    ;
    Díaz, R. F.
    ;
    Doyon, R.
    ;
    Figueira, P.
    ;
    Forveille, T.
    ;
    Kurtovic, N. T.
    ;
    Lovis, C.
    ;
    Mayor, M.
    ;
    Menou, K.
    ;
    Morgan, E.
    ;
    Morris, R.
    ;
    Muirhead, P.
    ;
    Murgas, F.
    ;
    Pepe, F.
    ;
    Santos, N. C.
    ;
    Ségransan, D.
    ;
    Smith, J. C.
    ;
    Tenenbaum, P.
    ;
    Torres, G.
    ;
    Udry, S.
    ;
    Vezie, M.
    ;
    Villasenor, J.
    Aims. L 98-59 (TIC 307210830, TOI-175) is a nearby M3 dwarf around which TESS revealed three small transiting planets (0.80, 1.35, 1.57 Earth radii) in a compact configuration with orbital periods shorter than 7.5 days. Here we aim to measure the masses of the known transiting planets in this system using precise radial velocity (RV) measurements taken with the HARPS spectrograph. Methods. We considered both trained and untrained Gaussian process regression models of stellar activity, which are modeled simultaneously with the planetary signals. Our RV analysis was then supplemented with dynamical simulations to provide strong constraints on the planets’ orbital eccentricities by requiring long-term stability. Results. We measure the planet masses of the two outermost planets to be 2.42 ± 0.35 and 2.31 ± 0.46 Earth masses, which confirms the bulk terrestrial composition of the former and eludes to a significant radius fraction in an extended gaseous envelope for the latter. We are able to place an upper limit on the mass of the smallest, innermost planet of <1.01 Earth masses with 95% confidence. Our RV plus dynamical stability analysis places strong constraints on the orbital eccentricities and reveals that each planet’s orbit likely has e < 0.1. Conclusions. L 98-59 is likely a compact system of two rocky planets plus a third outer planet with a lower bulk density possibly indicative of the planet having retained a modest atmosphere. The system offers a unique laboratory for studies of planet formation, dynamical stability, and comparative atmospheric planetology as the two outer planets are attractive targets for atmospheric characterization through transmission spectroscopy. Continued RV monitoring will help refine the characterization of the innermost planet andpotentially reveal additional planets in the system at wider separations.
  • Thumbnail Image
    Publication
    Detailed stellar activity analysis and modelling of GJ 832. Reassessment of the putative habitable zone planet GJ 832c
    (Astronomy & Astrophysics, 2022)
    Gorrini, P.
    ;
    ;
    Dreizler, S.
    ;
    Damasso, M.
    ;
    Díaz, R. F.
    ;
    Bonfils, X.
    ;
    Jeffers, S. V.
    ;
    Barnes, J. R.
    ;
    Del Sordo, F.
    ;
    Almenara, J.-M.
    ;
    Artigau, E.
    ;
    Bouchy, F.
    ;
    Charbonneau, D.
    ;
    Delfosse, X.
    ;
    Doyon, R.
    ;
    Figueira, P.
    ;
    Forveille, T.
    ;
    Haswell, C. A.
    ;
    López-González, M. J.
    ;
    Melo, C.
    ;
    Mennickent, R. E.
    ;
    Gaisné, G.
    ;
    Morales, N.
    ;
    Murgas, F.
    ;
    Pepe, F.
    ;
    Rodríguez, E.
    ;
    Santos, N. C.
    ;
    Tal-Or, L.
    ;
    Tsapras, Y.
    ;
    Udry, S.
    Context. Gliese-832 (GJ 832) is an M2V star hosting a massive planet on a decade-long orbit, GJ 832b, discovered by radial velocity (RV). Later, a super Earth or mini-Neptune orbiting within the stellar habitable zone was reported (GJ 832c). The recently determined stellar rotation period (45.7±9.3 days) is close to the orbital period of putative planet c (35.68±0.03 days). Aims. Weaimtoconfirmor dismiss the planetary nature of the RV signature attributed to GJ 832c, by adding 119 new RV data points, new photometric data, and an analysis of the spectroscopic stellar activity indicators. Additionally, we update the orbital parameters of the planetary system and search for additional signals. Methods. We performed a frequency content analysis of the RVs to search for periodic and stable signals. Radial velocity time series were modelled with Keplerians and Gaussian process (GP) regressions alongside activity indicators to subsequently compare them within a Bayesian framework. Results. We updated the stellar rotational period of GJ 832 from activity indicators, obtaining 37.5 +1.4 −1.5 days, improving the precision by a factor of 6. The new photometric data are in agreement with this value. We detected an RV signal near 18 days (FAP < 4.6%), which is half of the stellar rotation period. Two Keplerians alone fail at modelling GJ 832b and a second planet with a 35-day orbital period. Moreover, the Bayesian evidence from the GP analysis of the RV data with simultaneous activity indices prefers a model without a second Keplerian, therefore negating the existence of planet c.