Options
Dr. Astudillo-Defru, Nicola
Nombre de publicación
Dr. Astudillo-Defru, Nicola
Nombre completo
Astudillo Defru, Nicola
Facultad
Email
nastudillo@ucsc.cl
ORCID
2 results
Research Outputs
Now showing 1 - 2 of 2
- PublicationCompany for the Ultra-high Density, Ultra-short Period Sub-Earth GJ 367 b: Discovery of Two Additional Low-mass Planets at 11.5 and 34 Days(The Astrophysical Journal Letters, 2023)
;Goffo, Elisa ;Gandolfi, Davide ;Jo Ann, Egger ;Mustill, Alejandro ;Albrecht, H. ;Teruyuki, Hirano ;Kochukhov, Oleg; ;Barragán, Oscar ;Serrano, Luisa ;Hatzes, Artie ;Alibert ;Guenther, Eike ;Fei, Dai ;Kristine W. F. Lam ;Szilárd Csizmadia ;Alexis M. S. Smith ;Fossati, Luca ;Luque, Rafael ;Rodler, Florian ;Winther, Mark ;Rørsted, Jakob ;Alarcon, Javier ;Bonfils, Xavier ;Cochran,William ;Deeg, Hans J. ;Jenkins, Jon M. ;Korth, Judith ;Livingston, John ;Meech, Annabella ;Murgas, Felipe ;Orell-Miquel, Jaume ;Osborne, Hannah ;Enric, Palle ;Persson, Carina M. ;Seth,Redfield ;Ricker, George ;Seager, Sara ;Vanderspek, RolandVan Eylen, VincentGJ 367 is a bright (V ≈ 10.2) M1 V star that has been recently found to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the aim of improving the planetary mass and radius and unveiling the inner architecture of the system, we performed an intensive radial velocity follow-up campaign with the HARPS spectrograph—collecting 371 high-precision measurements over a baseline of nearly 3 yr—and combined our Doppler measurements with new TESS observations from sectors 35 and 36. We found that GJ 367 b has a mass of Mb = 0.633 ± 0.050 M⊕ and a radius of Rb = 0.699 ± 0.024 R⊕, corresponding to precisions of 8% and 3.4%, respectively. This implies a planetary bulk density of ρb = 10.2 ± 1.3 g cm−3 , i.e., 85% higher than Earth’s density. We revealed the presence of two additional non-transiting low-mass companions with orbital periods of∼11.5 and 34 days and minimum masses of M isinc c = 4.13 ± 0.36 M⊕ and M isind d = 6.03 ± 0.49 M⊕respectively, which lie close to the 3:1 mean motion commensurability. GJ 367 b joins the small class of high-density planets, namely the class of super-Mercuries, being the densest ultra-short period small planet known to date. Thanks to our precise mass and radius estimates, we explored the potential internal composition and structure of GJ 367 b, and found that it is expected to have an iron core with a mass fraction of -+ 0.91 0.23 0.07. How this iron core is formed and how such a high density is reached is still not clear, and we discuss the possible pathways of formation of such a small ultra-dense planet. - PublicationValidation of a Third Planet in the LHS 1678 System(IOP Publishing, 2024)
; ;Silverstein, Michele ;Barclay, Thomas ;Schlieder, Joshua ;Collins, Karen ;Schwarz, Richard ;Hord, Benjamin ;Rowe, Jason ;Kruse, Ethan ;Bonfils, Xavier ;Caldwell, Douglas ;Charbonneau, David ;Cloutier, Ryan ;Collins, Kevin ;Daylan, Tansu ;Fong, William ;Jenkins, Jon ;Kunimoto, Michelle ;McDermott, Scott ;Murgas, Felipe ;Palle, Enric ;Ricker, George ;Seager, Sara ;Shporer, Avi ;Tey, Evan ;Vanderspek, RolandWinn, JoshuaThe nearby LHS 1678 (TOI-696) system contains two confirmed planets and a wide-orbit, likely brown-dwarf companion, which orbit an M2 dwarf with a unique evolutionary history. The host star occupies a narrow “gap” in the Hertzsprung–Russell diagram lower main sequence, associated with the M dwarf fully convective boundary and long-term luminosity fluctuations. This system is one of only about a dozen M dwarf multiplanet systems to date that hosts an ultra-short-period planet (USP). Here we validate and characterize a third planet in the LHS 1678 system using TESS Cycle 1 and 3 data and a new ensemble of ground-based light curves. LHS 1678 d is a 0.98 ± 0.07 R⊕ planet in a 4.97 day orbit, with an insolation flux of -+ 9.1 0.8 SÅ 0.9. These properties place it near 4:3 mean motion resonance with LHS 1678 c and in company with LHS 1678 c in the Venus zone. LHS 1678 c and d are also twins in size and predicted mass, making them a powerful duo for comparative exoplanet studies. LHS 1678 d joins its siblings as another compelling candidate for atmospheric measurements with the JWST and mass measurements using high-precision radial velocity techniques. Additionally, USP LHS 1678 b breaks the “peas-ina-pod” trend in this system although additional planets could fill in the “pod” beyond its orbit. LHS 1678ʼs unique combination of system properties and their relative rarity among the ubiquity of compact multiplanet systems around M dwarfs makes the system a valuable benchmark for testing theories of planet formation and evolution.